ON A COMPARISON OF CASSELS PAIRINGS OF DIFFERENT ELLIPTIC CURVES

SHENXING ZHANG

Abstract

Let e_{1}, e_{2}, e_{3} be nonzero integers satisfying $e_{1}+e_{2}+e_{3}=0$. Let (a, b, c) be a primitive triple of odd integers satisfying $e_{1} a^{2}+e_{2} b^{2}+e_{3} c^{2}=0$. Denote by $E: y^{2}=x\left(x-e_{1}\right)\left(x+e_{2}\right)$ and $\mathcal{E}: y^{2}=x\left(x-e_{1} a^{2}\right)\left(x+e_{2} b^{2}\right)$. Assume that the 2 -Selmer groups of E and \mathcal{E} are minimal. Let n be a positive squarefree odd integer, where the prime factors of n are nonzero quadratic residues modulo each odd prime factor of $e_{1} e_{2} e_{3} a b c$. Then under certain conditions, the 2-Selmer group and the Cassels pairing of the quadratic twist $E^{(n)}$ coincide with those of $\mathcal{E}^{(n)}$. As a corollary, $E^{(n)}$ has Mordell-Weil rank zero without order 4 element in its Shafarevich-Tate group, if and only if these hold for $\mathcal{E}^{(n)}$. We also give some applications for the congruent number elliptic curve

1. Introduction

The quadratic twists family of a given elliptic curve are studied in many articles. What we want to study is when two different families have similar arithmetic properties. In [PZ89], given abelian varieties A_{1} and A_{2} over K whose ranks agree over each finite extension of K, Zarhin asks if A_{1} is necessarily isogenous to A_{2}. In [MR15], Mazur and Rubin consider the Selmer groups instead of ranks. They give a sufficient condition on when the Selmer ranks of elliptic curves E_{1} and E_{2} agree over at most quadratic extension of K. In particular, there are non-isogenous p^{k}-Selmer companions. It is also known that if the ℓ-Selmer ranks of E_{1} and E_{2} agree over each finite extension of K for all but finitely many primes ℓ, then E_{1} and E_{2} are K-isogenous, see [Chi20]. For related results, see also [Kis04, Yu19].

In this paper, we will study when the ranks of elliptic curves with full 2-torsion agree over a set of quadratic fields. More precisely, let

$$
E=\mathscr{E}_{e_{1}, e_{2}}: y^{2}=x\left(x-e_{1}\right)\left(x+e_{2}\right)
$$

be an elliptic curve defined over \mathbb{Q} with full 2-torsion, where $e_{1}, e_{2}, e_{3}=-e_{1}-e_{2}$ are non-zero integers. Let $E^{(n)}=\mathscr{E}_{e_{1} n, e_{2} n}$ be a quadratic twist of E, where n is an odd positive square-free integer. Let (a, b, c) be a primitive triple of odd integers satisfying

$$
e_{1} a^{2}+e_{2} b^{2}+e_{3} c^{2}=0
$$

Denote by $\mathcal{E}=\mathscr{E}_{e_{1} a^{2}, e_{2} b^{2}}$ and $\mathcal{E}^{(n)}=\mathscr{E}_{e_{1} n a^{2}, e_{2} n b^{2}}$ its quadratic twist.
Since we want to compare $E^{(n)}$ for different triples $\left(e_{1}, e_{2}, e_{3}\right)$, we will assume that

$$
\operatorname{gcd}\left(e_{1}, e_{2}, e_{3}\right)=1 \text { or } 2
$$

Date: October 6, 2023.
2020 Mathematics Subject Classification. Primary 11G05; Secondary 11R11, 11R29
Key words and phrases. elliptic curves; Selmer groups; 2-descent; Shafarevich-Tate groups; Cassels pairing; Gauss genus theory; class groups; full 2-torsion.
for simplicity. By a translation of x, one can show that $E \cong \mathscr{E}_{e_{2}, e_{3}} \cong \mathscr{E}_{e_{3}, e_{1}}$. This gives a symmetry on $\left(e_{1}, e_{2}, e_{3}\right)$. Without loss of generality, we may assume that $v_{2}\left(e_{3}\right)$ is maximal among $v_{2}\left(e_{i}\right)$, where v_{2} is the normalized 2-adic valuation. Then $v_{2}\left(e_{1}\right)=v_{2}\left(e_{2}\right)<v_{2}\left(e_{3}\right)$. We will write $2^{v_{2}(x)} \| x$.

Denote by $\operatorname{Sel}_{2}(E / \mathbb{Q})$ the 2-Selmer group of E. Then we have an exact sequence

$$
0 \rightarrow E(\mathbb{Q}) / 2 E(\mathbb{Q}) \rightarrow \operatorname{Sel}_{2}(E / \mathbb{Q}) \rightarrow W(E / \mathbb{Q})[2] \rightarrow 0
$$

If E has no rational point of order 4 , then $E(\mathbb{Q})\left[2^{\infty}\right] \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$ since it has full 2-torsion. Therefore, $\operatorname{Sel}_{2}(E / \mathbb{Q})$ contains $E(\mathbb{Q})[2] \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$.

The following theorems generalize the observations in [WZ22], which give a relation between $E^{(n)}$ and $\mathcal{E}^{(n)}$.

Theorem 1.1. Let n be an odd positive square-free integer coprime with $e_{1} e_{2} e_{3} a b c$, whose prime factors are quadratic residues modulo each odd prime factor of $e_{1} e_{2} e_{3} a b c$. Assume that

- e_{1}, e_{2} are odd and $2 \| e_{3}$.

If $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong \operatorname{Sel}_{2}(\mathcal{E} / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$, then the following are equivalent:
(1) $\operatorname{rank}_{\mathbb{Z}} E^{(n)}(\mathbb{Q})=0$ and $\amalg\left(E^{(n)} / \mathbb{Q}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2 t}$;
(2) $\operatorname{rank}_{\mathbb{Z}} \mathcal{E}^{(n)}(\mathbb{Q})=0$ and $\amalg\left(\mathcal{E}^{(n)} / \mathbb{Q}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2 t}$.

When $\operatorname{gcd}\left(e_{1}, e_{2}, e_{3}\right)=2, E^{(n)}=\mathscr{E}_{e_{1} / 2, e_{2} / 2}^{(2 n)}$ is an even quadratic twist of an elliptic curve in Theorem 1.1. In this case, an additional condition is required.

Theorem 1.2. Let n be an odd positive square-free integer coprime with $e_{1} e_{2} e_{3} a b c$, whose prime factors are quadratic residues modulo each odd prime factor of $e_{1} e_{2} e_{3} a b c$. Assume that

- $2\left\|e_{1}, 2\right\| e_{2}, 4 \mid e_{3}$;
- both E and $E^{(n)}$ have no rational point of order 4;
- if $e_{2}>0$ and $e_{3}<0$, then every prime factor of n is congruent to 1 modulo 4, or every odd prime factor of $e_{2} e_{3} b c$ is congruent to 1 modulo 4;
- if $e_{3}>0$ and $e_{1}<0$, then every prime factor of n is congruent to 1 modulo 4 , or every odd prime factor of $e_{1} e_{3} a c$ is congruent to 1 modulo 4;
- if $e_{1}>0$ and $e_{2}<0$, then every prime factor of n is congruent to 1 modulo 4.

If $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong \operatorname{Sel}_{2}(\mathcal{E} / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$, then the following are equivalent:
(1) $\operatorname{rank}_{\mathbb{Z}} E^{(n)}(\mathbb{Q})=0$ and $\amalg\left(E^{(n)} / \mathbb{Q}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2 t}$;
(2) $\operatorname{rank}_{\mathbb{Z}} \mathcal{E}^{(n)}(\mathbb{Q})=0$ and $\amalg\left(\mathcal{E}^{(n)} / \mathbb{Q}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2 t}$.

For general triples $\left(e_{1}, e_{2}, e_{3}\right)$, we require that the prime factors of n are congruent to 1 modulo 8.
Theorem 1.3. Let n be an odd positive square-free integer coprime with $e_{1} e_{2} e_{3} a b c$, whose prime factors are quadratic residues modulo each odd prime factor of $e_{1} e_{2} e_{3} a b c$. Assume that

- both E and $E^{(n)}$ have no rational point of order 4;
- every prime factor of n is congruent to 1 modulo 8.

If $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong \operatorname{Sel}_{2}(\mathcal{E} / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$, then the following are equivalent:
(1) $\operatorname{rank}_{\mathbb{Z}} E^{(n)}(\mathbb{Q})=0$ and $\amalg\left(E^{(n)} / \mathbb{Q}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2 t}$;
(2) $\operatorname{rank}_{\mathbb{Z}} \mathcal{E}^{(n)}(\mathbb{Q})=0$ and $\amalg\left(\mathcal{E}^{(n)} / \mathbb{Q}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2 t}$.

In each case, we will study the local solvability of homogeneous spaces and show the identical structure of 2-Selmer groups. Then we will use Lemmas 2.7 and 2.8 to show the identical structure of Cassels pairings. The main difference between these theorems is the local solvability and the Cassels pairing at the place 2. We will also give applications for the congruent number elliptic curve, see Theorems 5.2 and 5.3.

The symbols we will use are listed here.

- v_{p} the normalized p-adic valuation.
- $\operatorname{gcd}\left(m_{1}, \ldots, m_{t}\right)$ the greatest common divisor of integers m_{1}, \ldots, m_{t}.
- $(\alpha, \beta)_{v} \in\{ \pm 1\}$ the Hilbert symbol, $\alpha, \beta \in \mathbb{Q}_{v}^{\times}$.
- $[\alpha, \beta]_{v} \in \mathbb{F}_{2}$ the additive Hilbert symbol, i.e., $(\alpha, \beta)_{v}=(-1)^{[\alpha, \beta]_{v}}$.
- $\left(\frac{\alpha}{\beta}\right)=\prod_{p \mid \beta}(\alpha, \beta)_{p} \in\{ \pm 1\}$ the Jacobi symbol, where α is coprime with $\beta>0$.
- $\left[\frac{\alpha}{\beta}\right]=\sum_{p \mid \beta}[\alpha, \beta]_{p} \in \mathbb{F}_{2}$ the additive Jacobi symbol, where α is coprime with $\beta>0$.
- $m^{*}=(-1, m)_{2} m \equiv 1 \bmod 4$ for nonzero odd integer m.
- $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$ a triple of square-free integers, where $d_{1} d_{2} d_{3}$ is a square.
- D_{Λ} the homogeneous space associated to E and Λ, see (2.1).
- $\operatorname{Sel}_{2}^{\prime}(\mathscr{E})$ the pure 2 -Selmer group of \mathscr{E}, see (2.2). We will simply write $\Lambda \in \operatorname{Sel}_{2}^{\prime}(\mathscr{E})$ the class of $\Lambda \in \operatorname{Sel}_{2}(\mathscr{E} / \mathbb{Q})$ for convention.
- $\mathbf{0}=(0, \ldots, 0)^{\mathrm{T}}$ and $\mathbf{1}=(1, \ldots, 1)^{\mathrm{T}}$.
- I the identity matrix and \mathbf{O} the zero matrix.
- $\mathbf{A}=\mathbf{A}_{n}$ a matrix associated to n, see (2.5).
- $\mathbf{D}_{u}=\operatorname{diag}\left\{\left[\frac{u}{p_{1}}\right], \ldots,\left[\frac{u}{p_{k}}\right]\right\}$, see (2.6).

2. The general case

2.1. Classical 2-descent. As shown in [Cas98], the 2-Selmer group $\operatorname{Sel}_{2}(E / \mathbb{Q})$ can be identified with

$$
\left\{\Lambda=\left(d_{1}, d_{2}, d_{3}\right) \in\left(\mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}\right)^{3}: D_{\Lambda}\left(\mathbb{A}_{\mathbb{Q}}\right) \neq \emptyset, d_{1} d_{2} d_{3} \equiv 1 \bmod \mathbb{Q}^{\times 2}\right\}
$$

where D_{Λ} is a genus one curve defined by

$$
\begin{cases}H_{1}: & e_{1} t^{2}+d_{2} u_{2}^{2}-d_{3} u_{3}^{2}=0 \tag{2.1}\\ H_{2}: & e_{2} t^{2}+d_{3} u_{3}^{2}-d_{1} u_{1}^{2}=0 \\ H_{3}: & e_{3} t^{2}+d_{1} u_{1}^{2}-d_{2} u_{2}^{2}=0\end{cases}
$$

Under this identification, the points $O,\left(e_{1}, 0\right),\left(-e_{2}, 0\right),(0,0)$ and other point $(x, y) \in$ $E(\mathbb{Q})$ correspond to

$$
(1,1,1),\left(-e_{3},-e_{1} e_{3}, e_{1}\right),\left(-e_{2} e_{3}, e_{3},-e_{2}\right),\left(e_{2},-e_{1},-e_{1} e_{2}\right)
$$

and $\left(x+e_{2}, x-e_{1}, x\right)$ respectively.
Denote by

$$
\begin{equation*}
\operatorname{Sel}_{2}^{\prime}(E):=\frac{\operatorname{Sel}_{2}(E / \mathbb{Q})}{E(\mathbb{Q})_{\text {tors }} / 2 E(\mathbb{Q})_{\text {tors }}} \tag{2.2}
\end{equation*}
$$

the pure 2 -Selmer group of E defined over \mathbb{Q}.
Lemma 2.1 ([Ono96]). $E(\mathbb{Q})$ has a point of order 4 if and only if one of the three pairs $\left(-e_{1}, e_{2}\right),\left(-e_{2}, e_{3}\right)$ and $\left(-e_{3}, e_{1}\right)$ consists of squares of integers.

If E has no rational point of order 4 , then $\operatorname{Sel}_{2}(E / \mathbb{Q})$ contains $E(\mathbb{Q})\left[2^{\infty}\right]=$ $E(\mathbb{Q})[2] \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$ and therefore $\operatorname{Sel}_{2}^{\prime}(E)=\operatorname{Sel}_{2}(E / \mathbb{Q}) / E(\mathbb{Q})[2]$. Cassels in [Cas98] defined a skew-symmetric bilinear pairing $\langle-,-\rangle$ on the \mathbb{F}_{2}-vector space $\operatorname{Sel}_{2}^{\prime}(E)$. We will write it additively. For any $\Lambda \in \operatorname{Sel}_{2}(E)$, choose $P=\left(P_{v}\right)_{v} \in D_{\Lambda}\left(\mathbb{A}_{\mathbb{Q}}\right)$. Since H_{i} is locally solvable everywhere, there exists $Q_{i} \in H_{i}(\mathbb{Q})$ by Hasse-Minkowski principle. Let L_{i} be a linear form in three variables such that $L_{i}=0$ defines the tangent plane of H_{i} at Q_{i}. For any $\Lambda^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}\right) \in \operatorname{Sel}_{2}(E)$, define

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{E}=\sum_{v}\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{E, v} \in \mathbb{F}_{2}, \quad \text { where } \quad\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{E, v}=\sum_{i=1}^{3}\left[L_{i}\left(P_{v}\right), d_{i}^{\prime}\right]_{v}
$$

This pairing is independent of the choice of P and Q_{i}, and is trivial on $E(\mathbb{Q})[2]$. We will omit the subscript E if there is no confusion.

Lemma 2.2 ([Cas98, Lemma 7.2]). The local Cassels pairing $\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{E, p}=0$ if

- $p \nmid 2 \infty$,
- the coefficients of H_{i} and L_{i} are all integral at p, and
- D_{Λ} and L_{i}, taken modulo p, define a curve of genus 1 over \mathbb{F}_{p} together with tangents to it.

Lemma 2.3 ([Wan16, p. 2157]). If E has no rational point of order 4, then the following are equivalent:
(1) $\operatorname{rank}_{\mathbb{Z}} E(\mathbb{Q})=0$ and $\amalg(E / \mathbb{Q})\left[2^{\infty}\right] \cong(\mathbb{Z} / 2 \mathbb{Z})^{2 t}$;
(2) $\operatorname{Sel}_{2}^{\prime}(E)$ has dimension $2 t$ and the Cassels pairing on it is non-degenerate.
2.2. Homogeneous spaces. Let's consider the quadratic twist $E^{(n)}$. The homogeneous space $D_{\Lambda}^{(n)}$ associated to $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$ is

$$
\begin{cases}H_{1}: & e_{1} n t^{2}+d_{2} u_{2}^{2}-d_{3} u_{3}^{2}=0 \\ H_{2}: & e_{2} n t^{2}+d_{3} u_{3}^{2}-d_{1} u_{1}^{2}=0 \\ H_{3}: & e_{3} n t^{2}+d_{1} u_{1}^{2}-d_{2} u_{2}^{2}=0\end{cases}
$$

By classical descent theory, if $p \nmid 2 e_{1} e_{2} e_{3} n$, then $D_{\Lambda}^{(n)}\left(\mathbb{Q}_{p}\right)$ is non-empty if and only if $p \nmid d_{1} d_{2} d_{3}$, see [Sil09, Theorem X.1.1, Corollary X.4.4]. Hence we may assume that d_{1}, d_{2}, d_{3} are square-free divisors of $2 e_{1} e_{2} e_{3} n$ from now on.

Lemma 2.4. Let $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$. Then $D_{\Lambda}^{(n)}(\mathbb{R}) \neq \emptyset$ if and only if

- $d_{1}>0$, if $e_{2}>0, e_{3}<0$;
- $d_{2}>0$, if $e_{3}>0, e_{1}<0$;
- $d_{3}>0$, if $e_{1}>0, e_{2}<0$.

Proof. The proof is similar to [WZ22, Lemma 3.1(4)], which is easy to get.
Lemma 2.5. Let $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$ with all square-free d_{i}. Let n be a positive squarefree integer coprime with $e_{1} e_{2} e_{3}$ and p an odd prime factor of n. Then $D_{\Lambda}^{(n)}\left(\mathbb{Q}_{p}\right) \neq \emptyset$ if and only if

- $\left(\frac{d_{1}}{p}\right)=\left(\frac{d_{2}}{p}\right)=\left(\frac{d_{3}}{p}\right)=1$, if $p \nmid d_{1} d_{2} d_{3}$;
- $\left(\frac{-e_{2} e_{3} d_{1}}{p}\right)=\left(\frac{e_{3} n / d_{2}}{p}\right)=\left(\frac{-e_{2} n / d_{3}}{p}\right)=1$, if $p \nmid d_{1}, p\left|d_{2}, p\right| d_{3}$;
- $\left(\frac{-e_{3} n / d_{1}}{p}\right)=\left(\frac{-e_{3} e_{1} d_{2}}{p}\right)=\left(\frac{e_{1} n / d_{3}}{p}\right)=1$, if $p\left|d_{1}, p \nmid d_{2}, p\right| d_{3}$;
- $\left(\frac{e_{2} n / d_{1}}{p}\right)=\left(\frac{-e_{1} n / d_{2}}{p}\right)=\left(\frac{-e_{1} e_{2} d_{3}}{p}\right)=1$, if $p\left|d_{1}, p\right| d_{2}, p \nmid d_{3}$.

Proof. Assume that $p \nmid d_{1}, p \nmid d_{2}, p \nmid d_{3}$. If $D_{\Lambda}^{(n)}\left(\mathbb{Q}_{p}\right) \neq \emptyset$, then each $H_{i}\left(\mathbb{Q}_{p}\right) \neq \emptyset$ and $\left(\frac{d_{2} d_{3}}{p}\right)=\left(\frac{d_{1} d_{3}}{p}\right)=\left(\frac{d_{1} d_{2}}{p}\right)=1$. That's to say, $\left(\frac{d_{1}}{p}\right)=\left(\frac{d_{2}}{p}\right)=\left(\frac{d_{3}}{p}\right)=$ 1. Conversely, if $\left(\frac{d_{1}}{p}\right)=\left(\frac{d_{2}}{p}\right)=\left(\frac{d_{3}}{p}\right)=1$, then $\left(0, \sqrt{1 / d_{1}}, \sqrt{1 / d_{2}}, \sqrt{1 / d_{3}}\right) \in$ $D_{\Lambda}^{(n)}\left(\mathbb{Q}_{p}\right)$.

Assume that $p \nmid d_{1}, p\left|d_{2}, p\right| d_{3}$. Then $D_{\Lambda}^{(n)}\left(\mathbb{Q}_{p}\right) \neq \emptyset$ if and only if $D_{\Lambda^{\prime}}^{(n)}\left(\mathbb{Q}_{p}\right) \neq \emptyset$, where

$$
\Lambda^{\prime}=\Lambda \cdot\left(-e_{2} e_{3}, e_{3} n,-e_{2} n\right)=\left(-e_{2} e_{3} d_{1}, e_{3} n / d_{2},-e_{2} n / d_{3}\right)
$$

Hence this case can be reduced to the case $p \nmid d_{1} d_{2} d_{3}$. The rest cases can be obtained by symmetry.

Let $n=p_{1} \cdots p_{k}$ be a prime decomposition of n. For $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$ with square-free $d_{i} \mid 2 e_{1} e_{2} e_{3} n$, denote by

$$
\begin{equation*}
x_{i}=v_{p_{i}}\left(d_{1}\right), \quad y_{i}=v_{p_{i}}\left(d_{2}\right), \quad z_{i}=v_{p_{i}}\left(d_{3}\right) . \tag{2.3}
\end{equation*}
$$

Then $\mathbf{x}+\mathbf{y}+\mathbf{z}=\mathbf{0}$, where

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)^{\mathrm{T}}, \quad \mathbf{y}=\left(y_{1}, \ldots, y_{k}\right)^{\mathrm{T}}, \quad \mathbf{z}=\left(z_{1}, \ldots, z_{k}\right)^{\mathrm{T}} \in \mathbb{F}_{2}^{k}
$$

Write

$$
\begin{align*}
d_{1} & =p_{1}^{x_{1}} \cdots p_{k}^{x_{k}} \cdot \widetilde{d}_{1} \\
d_{2} & =p_{1}^{y_{1}} \cdots p_{k}^{y_{k}} \cdot \widetilde{d}_{2} \tag{2.4}\\
d_{3} & =p_{1}^{z_{1}} \cdots p_{k}^{z_{k}} \cdot \tilde{d}_{3}
\end{align*}
$$

Then $\widetilde{d}_{1} \widetilde{d}_{2} \widetilde{d}_{3} \in \mathbb{Q}^{\times 2}$.
Denote by

$$
\begin{equation*}
\mathbf{A}=\mathbf{A}_{n}=\left(\left[p_{j},-n\right]_{p_{i}}\right)_{i, j} \in M_{k}\left(\mathbb{F}_{2}\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{D}_{u}=\operatorname{diag}\left\{\left[\frac{u}{p_{1}}\right], \cdots,\left[\frac{u}{p_{k}}\right]\right\} \in M_{k}\left(\mathbb{F}_{2}\right) \tag{2.6}
\end{equation*}
$$

Theorem 2.6. Let n be an odd positive square-free integer coprime with $e_{1} e_{2} e_{3}$, whose prime factors are quadratic residues modulo each odd prime factor of $e_{1} e_{2} e_{3}$. Assume that

- both E and $E^{(n)}$ have no rational point of order 4;
- every prime factor of n is congruent to 1 modulo 8.

If $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$, then the map $\left(d_{1}, d_{2}, d_{3}\right) \mapsto\binom{\mathbf{x}}{\mathbf{y}}$ induces an isomorphism

$$
\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right) \xrightarrow{\sim} \operatorname{Ker}\left(\begin{array}{ll}
\mathbf{A} & \\
& \mathbf{A}
\end{array}\right)
$$

where $0<d_{i} \mid n$.
Proof. Let $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$ with square-free $d_{i} \mid 2 e_{1} e_{2} e_{3} n$ and denote by $\widetilde{\Lambda}=$ $\left(\widetilde{d}_{1}, \widetilde{d}_{2}, \widetilde{d}_{3}\right)$. Then $D_{\Lambda}^{(n)}(\mathbb{R}) \neq \emptyset$ if and only if $D_{\widetilde{\Lambda}}^{(1)}(\mathbb{R}) \neq \emptyset$ by Lemma 2.4 and the fact $\operatorname{sgn}\left(\widetilde{d}_{i}\right)=\operatorname{sgn}\left(d_{i}\right)$.

If q is a prime factor of $2 e_{1} e_{2} e_{3}$, then $n, d_{i} / \widetilde{d}_{i} \in \mathbb{Q}_{q}^{\times 2}$. Therefore,

$$
\left(t, u_{1}, u_{2}, u_{3}\right) \in D_{\Lambda}^{(n)}\left(\mathbb{Q}_{q}\right) \Longleftrightarrow\left(t \sqrt{n}, u_{1} \sqrt{\frac{d_{1}}{\widetilde{d}_{1}}}, u_{2} \sqrt{\frac{d_{2}}{\widetilde{d}_{2}}}, u_{3} \sqrt{\frac{d_{3}}{\widetilde{d}_{3}}}\right) \in D_{\widetilde{\Lambda}}^{(1)}\left(\mathbb{Q}_{q}\right)
$$

Hence $\Lambda \in \operatorname{Sel}_{2}\left(E^{(n)} / \mathbb{Q}\right)$ if and only if $\widetilde{\Lambda} \in \operatorname{Sel}_{2}(E / \mathbb{Q})$ and $D_{\Lambda}^{(n)}$ is locally solvable at each $p \mid n$.

If $\Lambda \in \operatorname{Sel}_{2}\left(E^{(n)} / \mathbb{Q}\right)$, then $\tilde{\Lambda} \in \operatorname{Sel}_{2}(E / \mathbb{Q})$. By our assumptions,

$$
\widetilde{\Lambda}=(1,1,1),\left(-e_{3},-e_{1} e_{3}, e_{1}\right),\left(-e_{2} e_{3}, e_{3},-e_{2}\right) \text { or }\left(e_{2},-e_{1},-e_{1} e_{2}\right)
$$

is 2-torsion. If $\widetilde{\Lambda}=\left(-e_{3},-e_{1} e_{3}, e_{1}\right)$, then

$$
\Lambda \cdot\left(-e_{3} n,-e_{1} e_{3}, e_{1} n\right)=\left(\prod_{i=1}^{k} p_{i}^{1-x_{i}}, \prod_{i=1}^{k} p_{i}^{y_{i}}, \prod_{i=1}^{k} p_{i}^{1-z_{i}}\right)
$$

The other cases are similar. Hence each element in $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ has a unique representative $\left(d_{1}, d_{2}, d_{3}\right)$ with $0<d_{i} \mid n$. Based on this, we can express $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ in terms of linear algebra by Lemma 2.5 after a translation of languages:

$$
\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right) \xrightarrow{\sim} \mathbf{M}_{n}, \quad \text { where } \quad \mathbf{M}_{n}=\left(\begin{array}{cc}
\mathbf{A}+\mathbf{D}_{-e_{3}} & \mathbf{D}_{-e_{2} e_{3}} \\
\mathbf{D}_{-e_{1} e_{3}} & \mathbf{A}+\mathbf{D}_{e_{3}}
\end{array}\right)
$$

Since $\left(\frac{p}{q}\right)=1$ for any odd primes $p|n, q| e_{1} e_{2} e_{3}$ and $\left(\frac{ \pm 1}{p}\right)=\left(\frac{ \pm 2}{p}\right)=1$, we have $\left(\frac{ \pm e_{i}}{p}\right)=1$. Therefore, $\mathbf{D}_{ \pm e_{i}}=\mathbf{O}$ and $\mathbf{M}_{n}=\operatorname{diag}\{\mathbf{A}, \mathbf{A}\}$.
2.3. The Cassels pairing. Let (a, b, c) be a primitive triple of odd integers satisfying

$$
e_{1} a^{2}+e_{2} b^{2}+e_{3} c^{2}=0
$$

Denote by $\mathcal{E}=\mathscr{E}_{e_{1} a^{2}, e_{2} b^{2}}$ and $\mathcal{E}^{(n)}=\mathscr{E}_{e_{1} a^{2} n, e_{2} b^{2} n}$.
Lemma 2.7. Assume that all prime factors of n are nonzero quadratic residues modulo each odd prime factor of $e_{1} e_{2} e_{3}$. If $a \equiv b \equiv c \equiv 1 \bmod 4$, then

$$
\frac{1}{8}(a+b)(b+c)(c+a) \equiv 1 \bmod 4
$$

is a quadratic residue modulo each prime factor of n.
Proof. Let α, β be coprime integers satisfying

$$
\frac{\beta}{\alpha}=\frac{e_{1}(a-c)}{e_{2}(b+c)}
$$

Then α is odd and β is even. It's not hard to show that

$$
\begin{aligned}
& \lambda a=e_{1} \alpha^{2}+2 e_{2} \alpha \beta-e_{2} \beta^{2} \equiv e_{1} \bmod 4 \\
& \lambda b=e_{1} \alpha^{2}-2 e_{1} \alpha \beta-e_{2} \beta^{2} \equiv e_{1} \bmod 4 \\
& \lambda c=e_{1} \alpha^{2}+e_{2} \beta^{2} \equiv e_{1} \bmod 4
\end{aligned}
$$

for some $\lambda \equiv e_{1} \bmod 4$. Then

$$
\begin{aligned}
& \lambda(a+b)=2(\alpha-\beta)\left(e_{1} \alpha+e_{2} \beta\right) \\
& \lambda(b+c)=2 e_{1} \alpha(\alpha-\beta) \\
& \lambda(c+a)=2 \alpha\left(e_{1} \alpha+e_{2} \beta\right)
\end{aligned}
$$

and

$$
\frac{1}{8}(a+b)(b+c)(c+a)=e_{1} \lambda\left(\lambda^{-2} \alpha(\alpha-\beta)\left(e_{1} \alpha+e_{2} \beta\right)\right)^{2} \equiv 1 \bmod 4
$$

Let q be a prime factor of λ. Then

$$
q \mid \operatorname{gcd}(\lambda(a+b), \lambda(a+c))=2\left(e_{1} \alpha+e_{2} \beta\right)
$$

If $q \nmid e_{1}$, then $q \mid \alpha(\alpha-\beta)$. If $q \mid \alpha$, then $q\left|e_{2} \beta, q\right| e_{2}$; if $q \mid(\alpha-\beta)$, then $q\left|e_{2}(\alpha-\beta)+\left(e_{1} \alpha+e_{2} \beta\right)=-e_{3} \alpha, q\right| e_{3}$. Hence $q \mid e_{1} e_{2} e_{3}$.

Let p be a prime factor of n. Since $e_{1} \lambda \equiv 1 \bmod 4$ and $\left(\frac{p}{q}\right)=1$ for any odd prime $q \mid e_{1} e_{2} e_{3}$, we have

$$
\left(\frac{e_{1} \lambda}{p}\right)=\left(\frac{p}{e_{1} \lambda}\right)=\prod_{q \mid e_{1} \lambda}\left(\frac{p}{q}\right)^{v_{q}\left(e_{1} \lambda\right)}=1
$$

Hence $(a+b)(b+c)(c+a) / 8$ is a quadratic residue modulo p.
Lemma 2.8. We have

$$
\begin{aligned}
& (a x+b y+c z)(x+y+z)-\frac{1}{2}(a+b)(b+c)(c+a)\left(\frac{x}{b+c}+\frac{y}{c+a}+\frac{z}{a+b}\right)^{2} \\
& \quad=\frac{1}{2}\left(e_{1} a+e_{2} b+e_{3} c\right)\left(\frac{x^{2}}{e_{1}}+\frac{y^{2}}{e_{2}}+\frac{z^{2}}{e_{3}}\right)
\end{aligned}
$$

Proof. The coefficient of x^{2} on the left-hand side is

$$
\begin{aligned}
& a-\frac{(a+b)(a+c)}{2(b+c)}=\frac{a(b+c)-b c-a^{2}}{2(b+c)}=\frac{e_{1} a(b+c)-e_{1} b c-e_{1} a^{2}}{2 e_{1}(b+c)} \\
= & \frac{e_{1} a(b+c)+\left(e_{2}+e_{3}\right) b c+e_{2} b^{2}+e_{3} c^{2}}{2 e_{1}(b+c)}=\frac{e_{1} a+e_{2} b+e_{3} c}{2 e_{1}}
\end{aligned}
$$

and the coefficient of $y z$ on the left-hand side is zero. The equality then follows by symmetry.

Proof of Theorem 1.3. Since E has no rational point of order 4, none of $\left(-e_{1}, e_{2}\right)$, $\left(-e_{2}, e_{3}\right),\left(-e_{3}, e_{1}\right)$ consists of squares by Lemma 2.1. Therefore, none of $\left(-e_{1} a^{2}, e_{2} b^{2}\right)$, $\left(-e_{2} b^{2}, e_{3} c^{2}\right),\left(-e_{3} c^{2}, e_{1} a^{2}\right)$ consists of squares and \mathcal{E} has no rational point of order 4. Similarly, $\mathcal{E}^{(n)}$ has no rational point of order 4.

By choosing suitable signs, we may assume that $a \equiv b \equiv c \equiv 1 \bmod 4$. Since the matrix in Theorem 2.6 does not depend on a, b, c, we have a canonical isomorphism

$$
\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right) \cong \operatorname{Sel}_{2}^{\prime}\left(\mathcal{E}^{(n)}\right)
$$

Let $\Lambda=\left(d_{1}, d_{2}, d_{3}\right), \Lambda^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}\right) \in \operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ with $0<d_{i}, d_{i}^{\prime} \mid n$. We will denote by D, H, Q, L, P the corresponding symbols for E and $\mathcal{D}, \mathcal{H}, \mathcal{Q}, \mathcal{L}, \mathcal{P}$ the corresponding symbols for \mathcal{E} in the calculation of Cassels pairing. Then $\mathcal{D}_{\Lambda}^{(n)}$ is defined as

$$
\begin{cases}\mathcal{H}_{1}: & e_{1} a^{2} n t^{2}+d_{2} u_{2}^{2}-d_{3} u_{3}^{2}=0 \\ \mathcal{H}_{2}: & e_{2} b^{2} n t^{2}+d_{3} u_{3}^{2}-d_{1} u_{1}^{2}=0 \\ \mathcal{H}_{3}: & e_{3} c^{2} n t^{2}+d_{1} u_{1}^{2}-d_{2} u_{2}^{2}=0\end{cases}
$$

Let $\left(\alpha_{i}, \beta_{i}, \gamma_{i}\right)$ be primitive triples of integers satisfying

$$
\begin{aligned}
& e_{1} n \alpha_{1}^{2}+d_{2} \beta_{1}^{2}-d_{3} \gamma_{1}^{2}=0 \\
& e_{2} n \alpha_{2}^{2}+d_{3} \beta_{2}^{2}-d_{1} \gamma_{2}^{2}=0 \\
& e_{3} n \alpha_{3}^{2}+d_{1} \beta_{3}^{2}-d_{2} \gamma_{3}^{2}=0
\end{aligned}
$$

Choose

$$
\begin{array}{ll}
\mathcal{Q}_{1}=\left(\alpha_{1}, a \beta_{1}, a \gamma_{1}\right) \in \mathcal{H}_{1}(\mathbb{Q}), & \mathcal{L}_{1}=e_{1} a n \alpha_{1} t+d_{2} \beta_{1} u_{2}-d_{3} \gamma_{1} u_{3} \\
\mathcal{Q}_{2}=\left(\alpha_{2}, b \beta_{2}, b \gamma_{2}\right) \in \mathcal{H}_{2}(\mathbb{Q}), & \mathcal{L}_{2}=e_{2} b n \alpha_{2} t+d_{3} \beta_{2} u_{3}-d_{1} \gamma_{2} u_{1} \\
\mathcal{Q}_{3}=\left(\alpha_{3}, c \beta_{3}, c \gamma_{3}\right) \in \mathcal{H}_{3}(\mathbb{Q}), & \mathcal{L}_{3}=e_{3} c n \alpha_{3} t+d_{1} \beta_{3} u_{1}-d_{2} \gamma_{3} u_{2}
\end{array}
$$

(i) The case $v \mid 2 e_{1} e_{2} e_{3} a b c$. Since each prime factor of n is a square in \mathbb{Q}_{v}, so is d_{i}^{\prime}. Therefore, $\left[\mathcal{L}_{i}\left(\mathcal{P}_{v}\right), d_{i}^{\prime}\right]_{v}=0=\left[L_{i}\left(P_{v}\right), d_{i}^{\prime}\right]_{v}$.
(ii) The case $v=p \mid n$. Since $a \equiv 1 \bmod 4$ and p is a quadratic residue modulo every odd prime factor q of $a b c$, we have

$$
[a, p]_{p}=\left[\frac{a}{p}\right]=\left[\frac{p}{a}\right]=\sum_{q \mid a} v_{q}(a)\left[\frac{p}{q}\right]=0
$$

Therefore $\left[a, d_{i}^{\prime}\right]_{p}=0$. Similarly, $\left[b, d_{i}^{\prime}\right]_{p}=\left[c, d_{i}^{\prime}\right]_{p}=0$.
(ii-a) The case $p \nmid d_{1} d_{2} d_{3}$. Take $\mathcal{P}_{p}=\left(0,1 / \sqrt{d_{1}}, 1 / \sqrt{d_{2}}, 1 / \sqrt{d_{3}}\right)=P_{p}$. Then

$$
\mathcal{L}_{1}\left(\mathcal{P}_{p}\right)=\beta_{1} \sqrt{d_{2}}-\gamma_{1} \sqrt{d_{3}}=L_{1}\left(P_{p}\right)
$$

Similarly, $\mathcal{L}_{2}\left(\mathcal{P}_{p}\right)=L_{2}\left(P_{p}\right)$ and $\mathcal{L}_{3}\left(\mathcal{P}_{p}\right)=L_{3}\left(P_{p}\right)$.
(ii-b) The case $p \nmid d_{1}, p\left|d_{2}, p\right| d_{3}$. Then $e_{3} n / d_{2},-e_{2} n / d_{3} \in \mathbb{Q}_{p}^{\times 2}$ by Lemma 2.5. Take $\mathcal{P}_{p}=(1,0, c u, b v)$ where $u^{2}=e_{3} n / d_{2}, v^{2}=-e_{2} n / d_{3}$. Then $P_{p}=(1,0, u, v)$ and

$$
\begin{aligned}
& \mathcal{L}_{1}\left(\mathcal{P}_{p}\right)=a e_{1} n \alpha_{1}-b d_{3} \gamma_{1} v+c d_{2} \beta_{1} u \\
& \mathcal{L}_{2}\left(\mathcal{P}_{p}\right)=b e_{2} n \alpha_{2}+b d_{3} \beta_{2} v=b L_{2}\left(P_{p}\right) \\
& \mathcal{L}_{3}\left(\mathcal{P}_{p}\right)=c e_{3} n \alpha_{3}-c d_{2} \gamma_{3} u=c L_{3}\left(P_{p}\right)
\end{aligned}
$$

Since

$$
\frac{\left(e_{1} n \alpha_{1}\right)^{2}}{e_{1}}+\frac{\left(-d_{3} \gamma_{1} v\right)^{2}}{e_{2}}+\frac{\left(d_{2} \beta_{1} u\right)^{2}}{e_{3}}=n\left(e_{1} n \alpha_{1}^{2}-d_{3} \gamma_{1}^{2}+d_{2} \beta_{1}^{2}\right)=0
$$

we have

$$
\mathcal{L}_{1}\left(\mathcal{P}_{p}\right) L_{1}\left(P_{p}\right)=\frac{1}{2}(a+b)(a+c)(b+c)\left(\frac{e_{1} n \alpha_{1}}{b+c}+\frac{d_{2} \beta_{1} u}{a+b}-\frac{d_{3} \gamma_{1} v}{a+c}\right)^{2}
$$

by Lemma 2.8. Therefore,

$$
\begin{aligned}
& {\left[\mathcal{L}_{1}\left(\mathcal{P}_{p}\right), d_{1}^{\prime}\right]_{p}=\left[L_{1}\left(P_{p}\right), d_{1}^{\prime}\right]_{p}+\left[2(a+b)(a+c)(b+c), d_{1}^{\prime}\right]_{p}=\left[L_{1}\left(P_{p}\right), d_{1}^{\prime}\right]} \\
& {\left[\mathcal{L}_{2}\left(\mathcal{P}_{p}\right), d_{2}^{\prime}\right]_{p}=\left[L_{2}\left(P_{p}\right), d_{2}^{\prime}\right]_{p}+\left[b, d_{2}^{\prime}\right]_{p}=\left[L_{2}\left(P_{p}\right), d_{2}^{\prime}\right]_{p}} \\
& {\left[\mathcal{L}_{3}\left(\mathcal{P}_{p}\right), d_{3}^{\prime}\right]_{p}=\left[L_{3}\left(P_{p}\right), d_{3}^{\prime}\right]_{p}+\left[c, d_{3}^{\prime}\right]_{p}=\left[L_{3}\left(P_{p}\right), d_{3}^{\prime}\right]_{p}}
\end{aligned}
$$

by Lemma 2.7.
(ii-c) The case $p\left|d_{1}, p \nmid d_{2}, p\right| d_{3}$, and the case $p\left|d_{1}, p\right| d_{2}, p \nmid d_{3}$ can be proved similarly by the symmetry of e_{i}.

Now we have

$$
\begin{aligned}
\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{\mathcal{E}^{(n)}} & =\sum_{v \mid 2 e_{1} e_{2} e_{3} a b c n \infty} \sum_{i=1}^{3}\left[\mathcal{L}_{i}\left(\mathcal{P}_{v}\right), d_{i}^{\prime}\right]_{v}=\sum_{p \mid n} \sum_{i=1}^{3}\left[\mathcal{L}_{i}\left(\mathcal{P}_{p}\right), d_{i}^{\prime}\right]_{p} \\
& =\sum_{p \mid n} \sum_{i=1}^{3}\left[L_{i}\left(P_{p}\right), d_{i}^{\prime}\right]_{p}=\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{E^{(n)}}
\end{aligned}
$$

by Lemma 2.2. In other words, the Cassels pairings on $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ and $\operatorname{Sel}_{2}^{\prime}\left(\mathcal{E}^{(n)}\right)$ are same under the identity $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right) \cong \operatorname{Sel}_{2}^{\prime}\left(\mathcal{E}^{(n)}\right)$. Since both $\left.E^{(} n\right)$ and $\mathcal{E}^{(n)}$ have no rational point of order 4 , this theorem follows from Lemma 2.3.

3. The odd case with $2 \| e_{3}$

Assume that e_{1}, e_{2} are odd and $2 \| e_{3}$. Let n be an odd positive square-free integer. Let $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$ where d_{1}, d_{2}, d_{3} are square-free integers dividing $2 e_{1} e_{2} e_{3} n$.

3.1. Homogeneous spaces.

Lemma 3.1. If $D_{\Lambda}^{(n)}\left(\mathbb{Q}_{2}\right) \neq \emptyset$, then d_{3} is odd.
Proof. The proof is similar to [WZ22, Lemma 3.1(2)]. Since we are dealing with homogeneous spaces, we may assume that t, u_{1}, u_{2}, u_{3} are 2 -adic integers and at least one of them is a 2-adic unit. Suppose that $D_{\Lambda}^{(n)}\left(\mathbb{Q}_{2}\right) \neq \emptyset$. If $2\left|d_{1}, 2 \nmid d_{2}, 2\right| d_{3}$, then u_{2} is even by H_{3} and t is even by H_{2}. Therefore, u_{3} is even by H_{1} and u_{1} is even by H_{2}, which is impossible. The case $2 \nmid d_{1}, 2\left|d_{2}, 2\right| d_{3}$ is similar. Hence d_{3} is odd.

Since the torsion $\left(-e_{3} n,-e_{1} e_{3}, e_{1} n\right)$ has 2-adic valuation $(1,1,0)$, any element in the pure 2-Selmer group $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ has a representative $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$ with odd $d_{i} \mid e_{1} e_{2} e_{3} n$.
Lemma 3.2. Let $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$ where d_{1}, d_{2}, d_{3} are odd. If $D_{\Lambda}^{(n)}$ is locally solvable at all places $v \neq 2$, then $D_{\Lambda}^{(n)}$ is also locally solvable at $v=2$.
Proof. The proof is similar to [WZ22, Lemma 3.4]. Since $D_{\Lambda}^{(n)}\left(\mathbb{Q}_{v}\right) \neq \emptyset$ for all places $v \neq 2$, each H_{i} is locally solvable at $v \neq 2$. By the product formula of Hilbert symbols, H_{i} is also locally solvable at 2. In other words,

$$
\left[e_{1} n d_{3}, d_{1}\right]_{2}=\left[e_{2} n d_{1}, d_{2}\right]_{2}=\left[e_{3} n d_{2}, d_{3}\right]_{2}=0
$$

(i) If $\left(d_{1}, d_{2}, d_{3}\right) \equiv(1,1,1) \bmod 4$, then $0=\left[e_{3} n d_{2}, d_{3}\right]_{2}=\left[2, d_{3}\right]_{2}$ and we have $d_{3} \equiv 1 \bmod 8$. Therefore, $d_{1} \equiv d_{2} \bmod 8$. If $d_{1} \equiv d_{2} \equiv 1 \bmod 8$, take

$$
t=0, u_{1}=\sqrt{d_{3} / d_{1}}, u_{2}=\sqrt{d_{3} / d_{2}}, u_{3}=1
$$

If $d_{1} \equiv d_{2} \equiv 5 \bmod 8$, take

$$
t=2, u_{1}=\sqrt{\left(d_{3}+4 e_{2} n\right) / d_{1}}, u_{2}=\sqrt{\left(d_{3}-4 e_{1} n\right) / d_{2}}, u_{3}=1
$$

(ii) If $\left(d_{1}, d_{2}, d_{3}\right) \equiv(-1,-1,1) \bmod 4$, then $d_{3} \equiv 1 \bmod 8$ similarly. Since

$$
\left[e_{1} n,-1\right]_{2}=\left[e_{1} n d_{3}, d_{1}\right]_{2}=0=\left[e_{2} n d_{1}, d_{2}\right]_{2}=\left[-e_{2} n,-1\right]_{2}
$$

we have $e_{1} n \equiv-e_{2} n \equiv 1 \bmod 4$. This implies that $4 \mid\left(e_{1}+e_{2}\right)=-e_{3}$, which is impossible.
(iii) If $d_{3} \equiv-1 \bmod 4$, then $\left[e_{3} n d_{2}, d_{3}\right]_{2}=0, e_{3} n d_{2} \equiv d_{3}+3 \bmod 8$ and

$$
\left(d_{1}-e_{2} n\right)-\left(d_{2}+e_{1} n\right)=d_{1}-d_{2}+e_{3} n \equiv 2\left(d_{1}+d_{2}\right) \equiv 0 \bmod 8
$$

If $\left(d_{1}, d_{2}, d_{3}\right) \equiv(1,-1,-1) \bmod 4$, then $\left[e_{2} n,-1\right]_{2}=0$ and $e_{2} n \equiv d_{1} \bmod 4$. If $\left(d_{1}, d_{2}, d_{3}\right) \equiv(-1,1,-1) \bmod 4$, then $\left[-e_{1} n,-1\right]_{2}=0$ and $e_{1} n \equiv-d_{2} \bmod 4$. If $d_{2}+e_{1} n \equiv d_{1}-e_{2} n \equiv 0 \bmod 8$, take

$$
t=1, u_{1}=\sqrt{e_{2} n / d_{1}}, u_{2}=\sqrt{-e_{1} n / d_{2}}, u_{3}=0
$$

If $d_{2}+e_{1} n \equiv d_{1}-e_{2} n \equiv 4 \bmod 8$, take

$$
t=1, u_{1}=\sqrt{\left(4 d_{3}+e_{2} n\right) / d_{1}}, u_{2}=\sqrt{\left(4 d_{3}-e_{1} n\right) / d_{2}}, u_{3}=2
$$

Hence $D_{\Lambda}^{(n)}$ is locally solvable at $v=2$.
Let $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$ with odd square-free $d_{i} \mid e_{1} e_{2} e_{3} n$. We will use the notations $\mathbf{x}, \mathbf{y}, \mathbf{z}, \widetilde{d}_{i}$ in (2.3) and (2.4).

Theorem 3.3. Let n be an odd positive square-free integer coprime with $e_{1} e_{2} e_{3}$, whose prime factors are quadratic residues modulo each odd prime factor of $e_{1} e_{2} e_{3}$. If $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$, then the map $\left(d_{1}, d_{2}, d_{3}\right) \mapsto\binom{\mathbf{x}}{\mathbf{y}}$ induces an isomorphism

$$
\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right) \xrightarrow{\sim} \operatorname{Ker}\left(\begin{array}{cc}
\mathbf{A}+\mathbf{D}_{-e_{3}} & \mathbf{D}_{-e_{2} e_{3}} \\
\mathbf{D}_{-e_{1} e_{3}} & \mathbf{A}+\mathbf{D}_{e_{3}}
\end{array}\right)
$$

where $0<d_{i} \mid n$.
Proof. Since e_{1}, e_{2} are odd and $2 \| e_{3}$, neither $\left(-n e_{2}, n e_{3}\right)$ nor $\left(-n e_{3}, n e_{1}\right)$ consists of squares. If $\left(-n e_{1}, n e_{2}\right)$ consists of squares, then $e_{1} \equiv-e_{2} \bmod 4$ and $4 \mid e_{3}$, which is impossible. Hence $E(\mathbb{Q})$ contains no point of order 4 by Lemma 2.1.

Let $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$ with odd square-free $d_{i} \mid e_{1} e_{2} e_{3} n$ and denote by $\widetilde{\Lambda}=$ $\left(\widetilde{d}_{1}, \widetilde{d}_{2}, \widetilde{d}_{3}\right)$. Similar to the proof of Theorem $2.6, D_{\Lambda}^{(n)}\left(\mathbb{Q}_{v}\right) \neq \emptyset$ if and only if $D_{\widetilde{\Lambda}}^{(1)}\left(\mathbb{Q}_{v}\right) \neq \emptyset$ for $v=\infty$ or odd $v \mid e_{1} e_{2} e_{3}$. Hence $\Lambda \in \operatorname{Sel}_{2}\left(E^{(n)} / \mathbb{Q}\right)$ if and only if $\widetilde{\Lambda} \in \operatorname{Sel}_{2}(E / \mathbb{Q})$ and $D_{\Lambda}^{(n)}$ is locally solvable at each $p \mid n$ by Lemmas 3.1 and 3.2.

If $\Lambda \in \operatorname{Sel}_{2}\left(E^{(n)} / \mathbb{Q}\right)$, then $\widetilde{\Lambda} \in \operatorname{Sel}_{2}(E / \mathbb{Q})$. By our assumptions, $\widetilde{\Lambda}$ is 2 -torsion, which should be $(1,1,1)$ or $\left(e_{2},-e_{1},-e_{1} e_{2}\right)$. If $\widetilde{\Lambda}=\left(e_{2},-e_{1},-e_{1} e_{2}\right)$, then

$$
\Lambda \cdot\left(n e_{2},-n e_{1},-e_{1} e_{2}\right)=\left(\prod_{i=1}^{k} p_{i}^{1-x_{i}}, \prod_{i=1}^{k} p_{i}^{1-y_{i}}, \prod_{i=1}^{k} p_{i}^{z_{i}}\right)
$$

Hence each element in $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ has a unique representative $\left(d_{1}, d_{2}, d_{3}\right)$ with $0<$ $d_{i} \mid n$. Based on this, we can express $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ in terms of linear algebra by Lemma 2.5 after a translation of languages.

Remark 3.4. Since $\left(\frac{p}{q}\right)=1$ for any odd primes $p|n, q| e_{1} e_{2} e_{3}$, we have $\mathbf{D}_{e}=\mathbf{D}_{u}$, where $u \in\{ \pm 1, \pm 2\}$ such that $e / u \equiv 1 \bmod 4$ for any square-free $e \mid e_{1} e_{2} e_{3}$.
3.2. The Cassels pairing. Let (a, b, c) be a primitive triple of integers satisfying

$$
e_{1} a^{2}+e_{2} b^{2}+e_{3} c^{2}=0
$$

Then a, b, c are odd. Denote by $\mathcal{E}=\mathscr{E}_{e_{1} a^{2}, e_{2} b^{2}}$ and $\mathcal{E}^{(n)}=\mathscr{E}_{e_{1} a^{2} n, e_{2} b^{2} n}$.
Proof of Theorem 1.1. As shown in the proof of Theorem 3.3, both $E^{(n)}$ and $\mathcal{E}(\mathbb{Q})^{(n)}$ have no rational point of order 4 . Since the matrix in Theorem 3.3 does not depend on a, b, c, we have a canonical isomorphism

$$
\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right) \cong \operatorname{Sel}_{2}^{\prime}\left(\mathcal{E}^{(n)}\right)
$$

By choosing suitable signs, we may assume that $a \equiv b \equiv c \equiv 1 \bmod 4$. Let $\Lambda=$ $\left(d_{1}, d_{2}, d_{3}\right), \Lambda^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}\right) \in \operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ with $0<d_{i}, d_{i}^{\prime} \mid n$. We will use the notations $\mathcal{D}, \mathcal{H}, \mathcal{Q}, \mathcal{L}, \mathcal{P}, D, H, Q, L, P, \alpha_{i}, \beta_{i}, \gamma_{i}$ in the proof of Theorem 1.3.
(i) The case odd $v \mid e_{1} e_{2} e_{3} a b c n$. The proof is similar to the proof of Theorem 1.3.
(ii) The case $v=2$. As shown in Lemma 3.2, the case $\left(d_{1}, d_{2}, d_{3}\right) \equiv(-1,-1,1) \bmod$ 4 is impossible.
(ii-a) The case $\left(d_{1}, d_{2}, d_{3}\right) \equiv(1,1,1) \bmod 4$. As shown in Lemma 3.2, if $d_{1} \equiv$ $d_{2} \equiv 1 \bmod 8$, take $\mathcal{P}_{2}=\left(0,1 / \sqrt{d_{1}}, 1 / \sqrt{d_{2}}, 1 / \sqrt{d_{3}}\right)=P_{2}$. Then

$$
\begin{aligned}
& \mathcal{L}_{1}\left(\mathcal{P}_{2}\right)=\beta_{1} \sqrt{d_{2}}-\gamma_{1} \sqrt{d_{3}}=L_{1}\left(P_{2}\right), \\
& \mathcal{L}_{2}\left(\mathcal{P}_{2}\right)=\beta_{2} \sqrt{d_{3}}-\gamma_{2} \sqrt{d_{1}}=L_{2}\left(P_{2}\right), \\
& \mathcal{L}_{3}\left(\mathcal{P}_{2}\right)=\beta_{3} \sqrt{d_{1}}-\gamma_{3} \sqrt{d_{2}}=L_{3}\left(P_{2}\right) .
\end{aligned}
$$

If $d_{1} \equiv d_{2} \equiv 5 \bmod 8$, denote by

$$
\begin{array}{ll}
\mathcal{U}=\sqrt{\left(d_{3}+4 e_{2} b^{2} n\right) d_{1}}, & \mathcal{V}=\sqrt{\left(d_{3}-4 e_{1} a^{2} n\right) d_{2}}, \\
U=\sqrt{\left(d_{3}+4 e_{2} n\right) d_{1}}, & V=\sqrt{\left(d_{3}-4 e_{1} n\right) d_{2}}
\end{array}
$$

with $\mathcal{U} \equiv \mathcal{V} \equiv U \equiv V \equiv 1 \bmod 4 . \quad$ Since $\mathcal{U}^{2} \equiv U^{2} \bmod 32$, we have $\mathcal{U} \equiv$ $U \bmod$ 16. Similarly, $\mathcal{V} \equiv V \bmod$ 16. Take $\mathcal{P}_{2}=\left(2, \mathcal{U} / d_{1}, \mathcal{V} / d_{2}, 1\right)$, then $P_{2}=$ $\left(2, U / d_{1}, V / d_{2}, 1\right)$ and

$$
\begin{aligned}
& \mathcal{L}_{1}\left(\mathcal{P}_{2}\right) \equiv 2 e_{1} a n \alpha_{1}+\beta_{1} V-d_{3} \gamma_{1} \equiv L_{1}\left(P_{2}\right), \\
& \mathcal{L}_{2}\left(\mathcal{P}_{2}\right) \equiv 2 e_{2} b n \alpha_{2}+d_{3} \beta_{2}-\gamma_{2} U \equiv L_{2}\left(P_{2}\right), \\
& \mathcal{L}_{3}\left(\mathcal{P}_{2}\right) \equiv 2 e_{3} c n \alpha_{3}+\beta_{3} U-\gamma_{3} V \equiv L_{3}\left(P_{2}\right)
\end{aligned}
$$

modulo 8 . If α_{1} is odd, then exactly one of β_{1} and γ_{1} is odd. Thus $\mathcal{L}_{1}\left(\mathcal{P}_{2}\right)$ is odd. If α_{1} is even, then both of β_{1} and γ_{1} are odd. By choosing a suitable sign of γ_{1}, we may assume that $2 \|\left(\beta_{1}-\gamma_{1}\right)$. Therefore, $2 \| \mathcal{L}_{1}\left(\mathcal{P}_{2}\right)$. Similarly, we may assume that $2 \| \mathcal{L}_{2}\left(\mathcal{P}_{2}\right)$. Note that β_{3}, γ_{3} are odd. By choosing a suitable sign of γ_{3}, we may assume that $2 \| \mathcal{L}_{3}\left(\mathcal{P}_{2}\right)$. Since $\mathcal{L}_{i}\left(\mathcal{P}_{2}\right) \equiv L_{i}\left(P_{2}\right) \bmod 8$, we have

$$
\left[\mathcal{L}_{i}\left(\mathcal{P}_{2}\right), d_{i}^{\prime}\right]_{2}=\left[L_{i}\left(P_{2}\right), d_{i}^{\prime}\right]_{2}
$$

(ii-b) The case $d_{3} \equiv-1 \bmod 4$. As shown in Lemma 3.2,

$$
e_{1} n+d_{2} \equiv e_{2} n-d_{1} \equiv 0 \bmod 4 \quad \text { and } \quad\left(e_{1} n+d_{2}\right)-\left(e_{2} n-d_{1}\right) \equiv 0 \bmod 8
$$

If $e_{1} n+d_{2} \equiv e_{2} n-d_{1} \equiv 0 \bmod 8$, take $\mathcal{P}_{2}=\left(1, b u / d_{1}, a v / d_{2}, 0\right)$ where $u^{2}=$ $e_{2} n d_{1}, v^{2}=-e_{1} n d_{2}$. Then $P_{2}=\left(1, u / d_{1}, v / d_{2}, 0\right)$ and

$$
\begin{aligned}
& \mathcal{L}_{1}\left(\mathcal{P}_{2}\right)=a e_{1} n \alpha_{1}+a \beta_{1} v=a L_{1}\left(P_{2}\right) \\
& \mathcal{L}_{2}\left(\mathcal{P}_{2}\right)=b e_{2} n \alpha_{2}-b \gamma_{2} u=b L_{2}\left(P_{2}\right) \\
& \mathcal{L}_{3}\left(\mathcal{P}_{2}\right)=-a \gamma_{3} v+b \beta_{3} u+c e_{3} n \alpha_{3}
\end{aligned}
$$

Since

$$
\frac{\left(-\gamma_{3} v\right)^{2}}{e_{1}}+\frac{\left(\beta_{3} u\right)}{e_{2}}+\frac{\left(e_{3} n \alpha_{3}\right)^{2}}{e_{3}}=n\left(-d_{2} \gamma_{3}^{2}+d_{1} \beta_{3}^{2}+e_{3} n \alpha_{3}^{2}\right)=0
$$

we have

$$
\mathcal{L}_{3}\left(\mathcal{P}_{2}\right) L_{3}\left(P_{2}\right)=\frac{1}{2}(a+b)(a+c)(b+c)\left(\frac{e_{3} n \alpha_{3}}{a+b}+\frac{\beta_{3} u}{a+c}-\frac{\gamma_{3} v}{b+c}\right)^{2}
$$

by Lemma 2.8. Therefore,

$$
\begin{aligned}
& {\left[\mathcal{L}_{1}\left(\mathcal{P}_{2}\right), d_{1}^{\prime}\right]_{2}=\left[L_{1}\left(P_{2}\right), d_{1}^{\prime}\right]_{2}+\left[a, d_{1}^{\prime}\right]_{2}=\left[L_{1}\left(P_{2}\right), d_{1}^{\prime}\right]_{2}} \\
& {\left[\mathcal{L}_{2}\left(\mathcal{P}_{2}\right), d_{2}^{\prime}\right]_{2}=\left[L_{2}\left(P_{2}\right), d_{2}^{\prime}\right]_{2}+\left[b, d_{2}^{\prime}\right]_{2}=\left[L_{2}\left(P_{2}\right), d_{2}^{\prime}\right]_{2}} \\
& {\left[\mathcal{L}_{3}\left(\mathcal{P}_{2}\right), d_{3}^{\prime}\right]_{2}=\left[L_{3}\left(P_{2}\right), d_{3}^{\prime}\right]_{2}+\left[2(a+b)(a+c)(b+c), d_{3}^{\prime}\right]_{2}=\left[L_{3}\left(P_{2}\right), d_{3}^{\prime}\right]_{2}}
\end{aligned}
$$

by Lemma 2.7.
If $e_{1} n+d_{2} \equiv e_{2} n-d_{1} \equiv 4 \bmod 8$, denote by

$$
\begin{array}{ll}
\mathcal{U}=\sqrt{\left(4 d_{3} b^{-2}+e_{2} n\right) d_{1}}, & \mathcal{V}=\sqrt{\left(4 d_{3} a^{-2}-e_{1} n\right) d_{2}} \\
U=\sqrt{\left(4 d_{3}+e_{2} n\right) d_{1}}, & V=\sqrt{\left(4 d_{3}-e_{1} n\right) d_{2}}
\end{array}
$$

with $\mathcal{U} \equiv \mathcal{V} \equiv U \equiv V \equiv 1 \bmod 4$. Similar to (ii-a), we have $\mathcal{U} \equiv U, \mathcal{V} \equiv V \bmod 16$. Take $\mathcal{P}_{2}=\left(1, b \mathcal{U} / d_{1}, a \mathcal{V} / d_{2}, 2\right)$, then $P_{2}=\left(1, U / d_{1}, V / d_{2}, 2\right)$ and

$$
\begin{aligned}
& \mathcal{L}_{1}\left(\mathcal{P}_{2}\right) \equiv a e_{1} n \alpha_{1}+a \beta_{1} V-2 d_{3} \gamma_{1} \\
& \mathcal{L}_{2}\left(\mathcal{P}_{2}\right) \equiv b e_{2} n \alpha_{2}+2 d_{3} \beta_{2}-b \gamma_{2} U \\
& \mathcal{L}_{3}\left(\mathcal{P}_{2}\right) \equiv-a \gamma_{3} V+b \beta_{3} U+c e_{3} n \alpha_{3}
\end{aligned}
$$

modulo 16 .
If γ_{1} is odd, then exactly one of α_{1} and β_{1} is odd. Thus $\mathcal{L}_{1}\left(\mathcal{P}_{2}\right)$ is odd. If γ_{1} is even, then both of α_{1} and β_{1} are odd. By choosing a suitable sign of α_{1}, we may assume that $4 \mid\left(\alpha_{1}+\beta_{1}\right)$. Therefore, $2 \| \mathcal{L}_{1}\left(\mathcal{P}_{2}\right)$. Since $\mathcal{L}_{1}\left(\mathcal{P}_{2}\right) \equiv a L_{1}\left(P_{2}\right) \bmod 8$, we have

$$
\left[\mathcal{L}_{1}\left(\mathcal{P}_{2}\right), d_{1}^{\prime}\right]_{2}=\left[L_{1}\left(P_{2}\right), d_{1}^{\prime}\right]_{2}+\left[a, d_{1}^{\prime}\right]_{2}=\left[L_{1}\left(P_{2}\right), d_{1}^{\prime}\right]_{2}
$$

Similarly, we may assume that $2 \| \mathcal{L}_{2}\left(\mathcal{P}_{2}\right)$ by choosing a suitable sign of α_{2}. Since $\mathcal{L}_{2}\left(\mathcal{P}_{2}\right) \equiv a L_{2}\left(P_{2}\right) \bmod 8$, we have

$$
\left[\mathcal{L}_{2}\left(\mathcal{P}_{2}\right), d_{2}^{\prime}\right]_{2}=\left[L_{2}\left(P_{2}\right), d_{2}^{\prime}\right]_{2}+\left[b, d_{2}^{\prime}\right]_{2}=\left[L_{2}\left(P_{2}\right), d_{2}^{\prime}\right]_{2}
$$

Clearly, β_{3} and γ_{3} are odd. By choosing a suitable sign of γ_{3}, we may assume that $2 \| \mathcal{L}_{3}\left(\mathcal{P}_{2}\right)$ and $2 \| L_{3}\left(P_{2}\right)$. Since

$$
\begin{aligned}
& \frac{1}{4}\left(\frac{\left(-\gamma_{3} V\right)^{2}}{e_{1}}+\frac{\left(\beta_{3} U\right)^{2}}{e_{2}}+\frac{\left(e_{3} n \alpha_{3}\right)^{2}}{e_{3}}\right) \\
= & d_{3}\left(\frac{d_{1} \beta_{3}^{2}}{e_{2}}+\frac{d_{2} \gamma_{3}^{2}}{e_{1}}\right)+\frac{1}{4} n\left(e_{3} n \alpha_{3}^{2}+d_{1} \beta_{3}^{2}-d_{2} \gamma_{3}^{2}\right) \\
\equiv & d_{3}\left(d_{1} e_{2}+d_{2} e_{1}\right) \equiv d_{3}\left(\left(e_{2} n-4\right) e_{2}+\left(4-e_{1} n\right) e_{1}\right) \\
\equiv & 4 d_{3}\left(-e_{2}+e_{1}\right) \equiv 0 \bmod 8
\end{aligned}
$$

and $4 \mid\left(e_{1} a+e_{2} b+e_{3} c\right)$, the odd number

$$
\frac{\mathcal{L}_{3}\left(\mathcal{P}_{2}\right)}{2} \cdot \frac{L_{3}\left(P_{2}\right)}{2} \equiv \frac{1}{8}(a+b)(a+c)(b+c)\left(-\frac{\gamma_{3} V}{b+c}+\frac{\beta_{3} U}{c+a}+\frac{e_{3} n \alpha_{3}}{a+b}\right)^{2} \bmod 8
$$

is congruent to 1 modulo 4 by Lemmas 2.8 and 2.7. Therefore

$$
\left[\mathcal{L}_{3}\left(\mathcal{P}_{2}\right), d_{3}^{\prime}\right]_{2}=\left[L_{3}\left(P_{2}\right), d_{3}^{\prime}\right]_{2}
$$

The rest part is similar to the proof of Theorem 1.3.

4. The even case

Assume that $2\left\|e_{1}, 2\right\| e_{2}, 4 \mid e_{3}$ and $E^{(n)}$ has no rational point of order 4. Write $e_{i}=2 f_{i}$. Let n be an odd positive square-free integer. Let $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$ where d_{1}, d_{2}, d_{3} are square-free divisors of $2 f_{1} f_{2} f_{3} n$.
4.1. Homogeneous spaces. Recall that $D_{\Lambda}^{(n)}$ is defined as

$$
\begin{cases}H_{1}: & 2 f_{1} n t^{2}+d_{2} u_{2}^{2}-d_{3} u_{3}^{2}=0 \\ H_{2}: & 2 f_{2} n t^{2}+d_{3} u_{3}^{2}-d_{1} u_{1}^{2}=0 \\ H_{3}: & 2 f_{3} n t^{2}+d_{1} u_{1}^{2}-d_{2} u_{2}^{2}=0\end{cases}
$$

and the 2 -torsion points of $E^{(n)}$ correspond to

$$
(1,1,1),\left(-2 f_{3} n,-f_{1} f_{3}, 2 f_{1} n\right),\left(-f_{2} f_{3}, 2 f_{3} n,-2 f_{2} n\right),\left(2 f_{2} n,-2 f_{1} n,-f_{1} f_{2}\right)
$$

These triples have 2 -valuations $(0,0,0),(0,1,1),(1,0,1),(1,1,0)$ (not correspondingly). Hence any element in the pure 2 -Selmer group $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ has a unique representative $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$ with odd $d_{i} \mid e_{1} e_{2} e_{3} n$.
Lemma 4.1. Let $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$ where d_{1}, d_{2}, d_{3} are odd. If $D_{\Lambda}^{(n)}\left(\mathbb{Q}_{2}\right) \neq \emptyset$, then $d_{3} \equiv 1 \bmod 4$.
Proof. Since $v_{2}(t) \geq v_{2}\left(u_{3}\right)=v_{2}\left(u_{2}\right)$ by H_{1} and $v_{2}(t) \geq v_{2}\left(u_{1}\right)=v_{2}\left(u_{3}\right)$ by H_{2}, we may assume that u_{1}, u_{2}, u_{3} are 2 -adic units and t is a 2 -adic integer. Then

$$
2 f_{3} n t^{2}=d_{2} u_{2}^{2}-d_{1} u_{1}^{2} \equiv d_{2}-d_{1} \bmod 8
$$

This implies that $d_{2} \equiv d_{1} \bmod 4$ and then $d_{3} \equiv 1 \bmod 4$.
Lemma 4.2. Let $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$ where d_{1}, d_{2}, d_{3} are odd and $d_{3} \equiv 1 \bmod 4$. If $D_{\Lambda}^{(n)}$ is locally solvable at all places $v \neq 2$, then $D_{\Lambda}^{(n)}$ is also locally solvable at $v=2$.

Proof. Similar to Lemma 3.2, we have

$$
\left[2 f_{1} n d_{3}, d_{1}\right]_{2}=\left[2 f_{2} n d_{1}, d_{2}\right]_{2}=\left[2 f_{3} n d_{2}, d_{3}\right]_{2}=0
$$

If $\left(d_{1}, d_{2}, d_{3}\right) \equiv(1,1,1) \bmod 4$, then $d_{1} \equiv d_{2} \equiv d_{3} \equiv 1 \bmod 8$. Take

$$
t=0, u_{1}=\sqrt{d_{3} / d_{1}}, u_{2}=\sqrt{d_{3} / d_{2}}, u_{3}=1
$$

If $\left(d_{1}, d_{2}, d_{3}\right) \equiv(-1,-1,1) \bmod 4$, then $2 f_{1} n d_{3} \equiv d_{1}+3$ and $2 f_{2} n d_{1} \equiv d_{2}+$ $3 \bmod 8$. In other words, $2 f_{1} n \equiv d_{2}+3 d_{3} \bmod 8$ and $2 f_{2} n \equiv d_{3}+3 d_{1} \bmod 8$. Take $t=u_{3}=1$, then

$$
u_{1}^{2}=\left(d_{3}+2 f_{2} n\right) / d_{1} \equiv 2 d_{2}+3 \equiv 1 \bmod 8
$$

and

$$
u_{2}^{2}=\left(d_{3}-2 f_{1} n\right) / d_{2} \equiv-2 d_{1}-1 \equiv 1 \bmod 8
$$

Hence $D_{\Lambda}^{(n)}$ is locally solvable at $v=2$.
The proof of the following lemma is similar to [WZ22, Lemma 3.3].

Lemma 4.3. Assume that n is coprime with $e_{1} e_{2} e_{3}$. If q is an odd prime factor of e_{i}, then $D_{\Lambda}^{(n)}\left(\mathbb{Q}_{q}\right) \neq \emptyset$ if and only if $q \nmid d_{i}$ and

- $\left(\frac{d_{i}}{q}\right)=1$, if $q \nmid d_{i+1}$;
- $\left(\frac{e_{i+1} n d_{i}}{q}\right)=1$, if $q \mid d_{i+1}, q^{2} \nmid e_{i}$;
- $\left(\frac{e_{i+1} n}{q}\right)=\left(\frac{d_{i}}{q}\right)=1$, if $q\left|d_{i+1}, q^{2}\right| e_{i}$.

Proof. By symmetry, we only need to consider the case $i=1$. Assume that $D_{\Lambda}\left(\mathbb{Q}_{q}\right) \neq \emptyset$. Since we are dealing with homogeneous spaces, we may assume that t, u_{1}, u_{2}, u_{3} are q-adic integers and at least one of them is a q-adic unit. If $q\left|d_{1}, q\right| d_{2}, q \nmid d_{3}$, then $q \mid u_{3}$ by H_{1} and $q \mid t$ by H_{3}. Therefore, $q \mid u_{1}$ by H_{2} and $q \mid u_{2}$ by H_{3}, which is impossible. Similarly, the case $q\left|d_{1}, q \nmid d_{2}, q\right| d_{3}$ is also impossible. Hence $q \nmid d_{1}$.

If $q \nmid d_{2} d_{3}$, then $\left(\frac{d_{1}}{q}\right)=\left(\frac{d_{2} d_{3}}{q}\right)=1$ by H_{1}. Conversely, if $\left(\frac{d_{1}}{q}\right)=1$, then we take

$$
\begin{aligned}
u_{2} & =d_{1} d_{3} / d_{2} \\
u_{1}^{2} & =d_{3}-e_{3} n t^{2} / d_{1} \\
u_{3}^{2} & =d_{1}+e_{1} n t^{2} / d_{3} \equiv d_{1} \bmod q
\end{aligned}
$$

where $t \in \mathbb{Z}_{q}$ such that $d_{3}-e_{3} n t^{2} / d_{1}$ is a square in \mathbb{Z}_{q}. In fact, if $e_{3} n d_{2}$ is quadratic residue modulo q, then we may take $t=\sqrt{\frac{d_{1} d_{3}}{e_{3} n}}$ and $u_{1}=0$; if not, then there exists $t \in\{0,1, \ldots,(q-1) / 2\}$ such that $d_{3}-e_{3} n t^{2} / d_{1} \bmod q$ is a nonzero square. Hence $D_{\Lambda}\left(\mathbb{Q}_{q}\right)$ is non-empty.

If $q\left|d_{2}, q\right| d_{3}$ and $q^{2} \nmid e_{1}$, then $\left(\frac{e_{2} n d_{1}}{q}\right)=1$ by H_{2}. Conversely, if $\left(\frac{e_{2} n d_{1}}{q}\right)=1$, then we take

$$
\begin{aligned}
u_{2}^{2} & =d_{1} d_{3} / d_{2} \\
u_{1}^{2} & =d_{3}-e_{3} n t^{2} / d_{1} \equiv e_{2} n t^{2} / d_{1} \bmod q \\
u_{3}^{2} & =d_{1}+e_{1} n t^{2} / d_{3}
\end{aligned}
$$

Similar to the previous case, there exists $t \in \mathbb{Z}_{q}$ such that $d_{1}+e_{1} t^{2} / d_{3}$ is a square in \mathbb{Z}_{q}. Hence $D_{\Lambda}\left(\mathbb{Q}_{q}\right)$ is non-empty.

If $q\left|d_{2}, q\right| d_{3}$ and $q^{2} \mid e_{1}$, then $\left(\frac{d_{1}}{q}\right)=\left(\frac{d_{2} d_{3}}{q}\right)=1$ by H_{1} and $\left(\frac{e_{2} n d_{1}}{q}\right)=1$ by H_{2}. Conversely, if $\left(\frac{e_{2} n}{q}\right)=\left(\frac{d_{1}}{q}\right)=1$, then $\left(\frac{-e_{3} n d_{1}}{q}\right)=1$ and we take

$$
\begin{aligned}
& u_{2}^{2}=d_{1} d_{3} / d_{2} \\
& u_{1}^{2}=d_{3}-e_{3} n t^{2} / d_{1} \equiv e_{2} n t^{2} / d_{1} \bmod q \\
& u_{3}^{2}=d_{1}+e_{1} n t^{2} / d_{3} \equiv d_{1} \bmod q
\end{aligned}
$$

Hence $D_{\Lambda}\left(\mathbb{Q}_{q}\right)$ is non-empty.
Let $\Lambda=\left(d_{1}, d_{2}, d_{3}\right) \in \operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ with odd $d_{i} \mid e_{1} e_{2} e_{3} n$ and $d_{3} \equiv 1 \bmod 4$. We will use the notations $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in (2.3). If $e_{2}>0$ and $e_{3}<0$, or all $p_{i} \equiv 1 \bmod 4$,
write

$$
\begin{align*}
d_{1} & =p_{1}^{x_{1}} \cdots p_{k}^{x_{k}} \cdot \widetilde{d}_{1} \\
d_{2} & =p_{1}^{y_{1}}\left(\frac{-1}{p_{1}}\right)^{z_{1}} \cdots p_{k}^{y_{k}}\left(\frac{-1}{p_{1}}\right)^{z_{k}} \cdot \widetilde{d}_{2} \tag{4.1}\\
d_{3} & =\left(p_{1}^{*}\right)^{z_{1}} \cdots\left(p_{k}^{*}\right)^{z_{k}} \cdot \widetilde{d}_{3}
\end{align*}
$$

where $p^{*}=\left(\frac{-1}{p}\right) p$. Then $\widetilde{d}_{1} \widetilde{d}_{2} \widetilde{d}_{3} \in \mathbb{Q}^{\times 2}$.
Theorem 4.4. Let n be an odd positive square-free integer coprime with $e_{1} e_{2} e_{3}$, whose prime factors are quadratic residues modulo each odd prime factor of $e_{1} e_{2} e_{3}$. Assume that

- both E and $E^{(n)}$ have no rational point of order 4;
- $e_{2}>0$ and $e_{3}<0$, or all $p_{i} \equiv 1 \bmod 4$;
- $\left(\frac{p^{*}}{q}\right)=1$ for any odd primes $p|n, q| e_{2} e_{3}$.

If $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$, then the map $\left(d_{1}, d_{2}, d_{3}\right) \mapsto\binom{\mathbf{x}}{\mathbf{z}}$ induces an isomorphism

$$
\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right) \xrightarrow{\sim} \operatorname{Ker}\left(\begin{array}{cc}
\mathbf{A}+\mathbf{D}_{e_{2}} & \mathbf{D}_{-e_{2} e_{3}} \\
\mathbf{D}_{-e_{1} e_{2}} & \mathbf{A}^{\mathrm{T}}+\mathbf{D}_{e_{2}}
\end{array}\right)
$$

where $d_{i} \mid n, d_{1}>0, d_{3} \equiv 1 \bmod 4$.
Proof. Let $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$ with odd square-free $d_{i} \mid e_{1} e_{2} e_{3} n$ and denote by $\widetilde{\Lambda}=$ $\left(\widetilde{d}_{1}, \widetilde{d}_{2}, \widetilde{d}_{3}\right)$. If all $p_{i} \equiv 1 \bmod 4$, then $\operatorname{sgn}\left(d_{i}\right)=\operatorname{sgn}\left(\widetilde{d}_{i}\right)$. If $e_{2}>0, e_{3}<0$, then $\operatorname{sgn}\left(d_{1}\right)=\operatorname{sgn}\left(\widetilde{d}_{1}\right)$. Hence $D_{\Lambda}^{(n)}(\mathbb{R}) \neq \emptyset$ if and only if $D_{\widetilde{\Lambda}}^{(1)}(\mathbb{R}) \neq \emptyset$ by Lemma 2.4.

One can show that $n, d_{i} / \widetilde{d}_{i} \in \mathbb{Q}_{q}^{\times 2}$ where q is an odd prime factor of e_{i} by our assumptions. Therefore, $D_{\Lambda}^{(n)}\left(\mathbb{Q}_{q}\right) \neq \emptyset$ if and only if $D_{\widetilde{\Lambda}}^{(1)}\left(\mathbb{Q}_{q}\right) \neq \emptyset$ by Lemma 4.3. Hence $\Lambda \in \operatorname{Sel}_{2}\left(E^{(n)} / \mathbb{Q}\right)$ if and only if $\widetilde{\Lambda} \in \operatorname{Sel}_{2}(E / \mathbb{Q})$ and $D_{\Lambda}^{(n)}$ is locally solvable at each $p \mid n$ by Lemmas 4.1, 4.2 and the fact $d_{3} \equiv \widetilde{d}_{3} \equiv 1 \bmod 4$.

If $\Lambda \in \operatorname{Sel}_{2}\left(E^{(n)} / \mathbb{Q}\right)$, then $\widetilde{\Lambda} \in \operatorname{Sel}_{2}(E / \mathbb{Q})$. By our assumptions, $\widetilde{\Lambda}=(1,1,1)$. Therefore, each element in $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ has a unique representative $\left(d_{1}, d_{2}, d_{3}\right)$ with $d_{i} \mid n, d_{1}>0, d_{3} \equiv 1 \bmod 4$. Based on this, we can express $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ in terms of linear algebra by Lemma 2.5 after a translation of languages. One needs the fact that

$$
\left(\left[p_{i}^{*},-n\right]_{p_{j}}\right)_{i, j}=\mathbf{A}^{\mathrm{T}}+\mathbf{D}_{-1}
$$

If $e_{3}>0$ and $e_{1}<0$, write

$$
\begin{aligned}
d_{1} & =p_{1}^{x_{1}}\left(\frac{-1}{p_{1}}\right)^{z_{1}} \cdots p_{k}^{x_{k}}\left(\frac{-1}{p_{1}}\right)^{z_{k}} \cdot \widetilde{d}_{1} \\
d_{2} & =p_{1}^{y_{1}} \cdots p_{k}^{y_{k}} \cdot \widetilde{d}_{2} \\
d_{3} & =\left(p_{1}^{*}\right)^{z_{1}} \cdots\left(p_{k}^{*}\right)^{z_{k}} \cdot \widetilde{d}_{3}
\end{aligned}
$$

Then $\widetilde{d}_{1} \widetilde{d}_{2} \widetilde{d}_{3} \in \mathbb{Q}^{\times 2}$. Similar to Theorem 4.4, we have:
Theorem 4.5. Let n be an odd positive square-free integer coprime with $e_{1} e_{2} e_{3}$, whose prime factors are quadratic residues modulo each odd prime factor of $e_{1} e_{2} e_{3}$. Assume that

- both E and $E^{(n)}$ have no rational point of order 4;
- $e_{3}>0$ and $e_{1}<0$;
- $\left(\frac{p^{*}}{q}\right)=1$ for any odd primes $p|n, q| e_{1} e_{3}$.

If $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$, then the map $\left(d_{1}, d_{2}, d_{3}\right) \mapsto\binom{\mathbf{y}}{\mathbf{z}}$ induces an isomorphism

$$
\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right) \xrightarrow{\sim} \operatorname{Ker}\left(\begin{array}{cc}
\mathbf{A}+\mathbf{D}_{-e_{1}} & \stackrel{\mathbf{D}}{-e_{1} e_{3}} \\
\mathbf{D}_{-e_{1} e_{2}} & \mathbf{A}^{\mathrm{T}}+\mathbf{D}_{-e_{1}}
\end{array}\right)
$$

where $d_{i} \mid n, d_{2}>0, d_{3} \equiv 1 \bmod 4$.
4.2. The Cassels pairing. Let (a, b, c) be a primitive triple of odd integers satisfying

$$
e_{1} a^{2}+e_{2} b^{2}+e_{3} c^{2}=0
$$

Denote by $\mathcal{E}=\mathscr{E}_{e_{1} a^{2}, e_{2} b^{2}}$ and $\mathcal{E}^{(n)}=\mathscr{E}_{e_{1} a^{2} n, e_{2} b^{2} n}$.
Proof of Theorem 1.2. Similar to the proof of Theorem 1.3, both $E^{(n)}$ and $\mathcal{E}(\mathbb{Q})^{(n)}$ have no rational point of order 4. By choosing suitable signs, we may assume that $a \equiv b \equiv c \equiv 1 \bmod 4$.

Assume that $e_{2}>0$ and $e_{3}<0$, or all prime factors of n are congruent to 1 modulo 4. Since the matrix in Theorem 4.4 does not depend on a, b, c, we have a canonical isomorphism

$$
\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right) \cong \operatorname{Sel}_{2}^{\prime}\left(\mathcal{E}^{(n)}\right)
$$

Let $\Lambda=\left(d_{1}, d_{2}, d_{3}\right), \Lambda^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}\right) \in \operatorname{Sel}_{2}^{\prime}\left(\mathcal{E}^{(n)}\right)$ with $d_{i}, d_{i}^{\prime} \mid n, d_{1}, d_{1}^{\prime}>0, d_{3} \equiv$ $d_{3}^{\prime} \equiv 1 \bmod 4$. If $d_{2}<0$ and $d_{2}^{\prime}<0$, we replace Λ^{\prime} by $\Lambda+\Lambda^{\prime}$. If $d_{2}>0$ and $d_{2}^{\prime}<0$, we switch Λ and Λ^{\prime}. Since

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle=\left\langle\Lambda, \Lambda+\Lambda^{\prime}\right\rangle=\left\langle\Lambda^{\prime}, \Lambda\right\rangle
$$

these operations do not change $\left\langle\Lambda, \Lambda^{\prime}\right\rangle$. Hence we may assume that $d_{2}^{\prime}>0$ and $d_{3}^{\prime}>0$. When $e_{3}>0$ and $e_{1}<0$, we may assume that $d_{1}^{\prime}>0$ and $d_{3}^{\prime}>0$ similarly.

We will denote by $\mathcal{D}, \mathcal{H}, \mathcal{Q}, \mathcal{L}, \mathcal{P}$ the corresponding symbols for \mathcal{E} and D, H, Q, L, P the corresponding symbols for E in the calculation of Cassels pairing. Recall that $\mathcal{D}_{\Lambda}^{(n)}$ is defined as

$$
\begin{cases}\mathcal{H}_{1}: & 2 f_{1} a^{2} n t^{2}+d_{2} u_{2}^{2}-d_{3} u_{3}^{2}=0 \\ \mathcal{H}_{2}: & 2 f_{2} b^{2} n t^{2}+d_{3} u_{3}^{2}-d_{1} u_{1}^{2}=0 \\ \mathcal{H}_{3}: & 2 f_{3} c^{2} n t^{2}+d_{1} u_{1}^{2}-d_{2} u_{2}^{2}=0\end{cases}
$$

Let $\left(\alpha_{i}, \beta_{i}, \gamma_{i}\right)$ be primitive triples of integers satisfying

$$
\begin{aligned}
& 2 f_{1} n \alpha_{1}^{2}+d_{2} \beta_{1}^{2}-d_{3} \gamma_{1}^{2}=0 \\
& 2 f_{2} n \alpha_{2}^{2}+d_{3} \beta_{2}^{2}-d_{1} \gamma_{2}^{2}=0 \\
& 2 f_{3} n \alpha_{3}^{2}+d_{1} \beta_{3}^{2}-d_{2} \gamma_{3}^{2}=0
\end{aligned}
$$

Choose

$$
\begin{array}{ll}
\mathcal{Q}_{1}=\left(\alpha_{1}, a \beta_{1}, a \gamma_{1}\right) \in \mathcal{H}_{1}(\mathbb{Q}), & \mathcal{L}_{1}=2 f_{1} a n \alpha_{1} t+d_{2} \beta_{1} u_{2}-d_{3} \gamma_{1} u_{3}, \\
\mathcal{Q}_{2}=\left(\alpha_{2}, b \beta_{2}, b \gamma_{2}\right) \in \mathcal{H}_{2}(\mathbb{Q}), & \mathcal{L}_{2}=2 f_{2} b n \alpha_{2} t+d_{3} \beta_{2} u_{3}-d_{1} \gamma_{2} u_{1}, \\
\mathcal{Q}_{3}=\left(\alpha_{3}, c \beta_{3}, c \gamma_{3}\right) \in \mathcal{H}_{3}(\mathbb{Q}), & \mathcal{L}_{3}=2 f_{3} c n \alpha_{3} t+d_{1} \beta_{3} u_{1}-d_{2} \gamma_{3} u_{2} .
\end{array}
$$

(i) The case odd $v=q \mid e_{1} e_{2} e_{3} a b c$. Since $\left(\frac{p}{q}\right)=1$ for any prime factor p of n, $d_{i}^{\prime}>0$ is a square modulo q. Therefore, $\left[\mathcal{L}_{i}\left(\mathcal{P}_{q}\right), d_{i}^{\prime}\right]_{q}=0=\left[L_{i}\left(P_{q}\right), d_{i}^{\prime}\right]_{q}$.
(ii) The case $v=p \mid n$. The proof is similar to the proof of Theorem 1.3.
(iii) The case $v=2$. Note that $d_{3} \equiv 1 \bmod 4$.
(iii-a) The case $\left(d_{1}, d_{2}, d_{3}\right) \equiv(1,1,1) \bmod 4$. As shown in Lemma 4.2, we have $d_{1} \equiv d_{2} \equiv d_{3} \equiv 1 \bmod 8$, take $\mathcal{P}_{2}=\left(0,1 / \sqrt{d_{1}}, 1 / \sqrt{d_{2}}, 1 / \sqrt{d_{3}}\right)=P_{2}$. Then

$$
\begin{aligned}
& \mathcal{L}_{1}\left(\mathcal{P}_{2}\right)=\beta_{1} \sqrt{d_{2}}-\gamma_{1} \sqrt{d_{3}}=L_{1}\left(P_{2}\right) \\
& \mathcal{L}_{2}\left(\mathcal{P}_{2}\right)=\beta_{2} \sqrt{d_{3}}-\gamma_{2} \sqrt{d_{1}}=L_{2}\left(P_{2}\right), \\
& \mathcal{L}_{3}\left(\mathcal{P}_{2}\right)=\beta_{3} \sqrt{d_{1}}-\gamma_{3} \sqrt{d_{2}}=L_{3}\left(P_{2}\right)
\end{aligned}
$$

(iii-b) The case $\left(d_{1}, d_{2}, d_{3}\right) \equiv(-1,-1,1) \bmod 4$. As shown in Lemma 4.2, we have $\left(d_{3}+2 f_{2} b^{2} n\right) d_{1} \equiv\left(d_{3}-2 f_{1} a^{2} n\right) d_{2} \equiv 1 \bmod 8$. Denote by

$$
\begin{array}{ll}
\mathcal{U}=\sqrt{\left(d_{3}+2 f_{2} b^{2} n\right) d_{1}}, & \mathcal{V}=\sqrt{\left(d_{3}-2 f_{1} a^{2} n\right) d_{2}} \\
U=\sqrt{\left(d_{3}+2 f_{2} n\right) d_{1}}, & V=\sqrt{\left(d_{3}-2 f_{1} n\right) d_{2}}
\end{array}
$$

with $\mathcal{U} \equiv \mathcal{V} \equiv U \equiv V \equiv 1 \bmod 4$. Since $\mathcal{U}^{2} \equiv U^{2} \bmod 16$, we have $\mathcal{U} \equiv U \bmod 8$. Similarly, $\mathcal{V} \equiv V \bmod 8$.

Take $\mathcal{P}_{2}=\left(1, \mathcal{U} / d_{1}, \mathcal{V} / d_{2}, 1\right)$, then $P_{2}=\left(1, U / d_{1}, V / d_{2}, 1\right)$. Note that all β_{i}, γ_{i} are odd. By choosing suitable signs of γ_{i}, we may assume that $2 \| \mathcal{L}_{i}\left(\mathcal{P}_{2}\right)$. Since

$$
\begin{aligned}
& \mathcal{L}_{1}\left(\mathcal{P}_{2}\right) \equiv 2 f_{1} a n \alpha_{1}+\beta_{1} V-d_{3} \gamma_{1} \equiv L_{1}\left(P_{2}\right) \\
& \mathcal{L}_{2}\left(\mathcal{P}_{2}\right) \equiv 2 f_{2} b n \alpha_{2}+d_{3} \beta_{2}-\gamma_{2} U \equiv L_{2}\left(P_{2}\right) \\
& \mathcal{L}_{3}\left(\mathcal{P}_{2}\right) \equiv 2 f_{3} c n \alpha_{3}+\beta_{3} U-\gamma_{3} V \equiv L_{3}\left(P_{2}\right)
\end{aligned}
$$

modulo 8 , we have

$$
\left[\mathcal{L}_{i}\left(\mathcal{P}_{2}\right), d_{i}^{\prime}\right]_{2}=\left[L_{i}\left(P_{2}\right), d_{i}^{\prime}\right]_{2}
$$

The rest part is similar to the proof of Theorem 1.3.

5. Congruent number elliptic curves

Assume that $n=p_{1} \cdots p_{k} \equiv 1 \bmod 4$. Denote by

$$
h_{2^{s}}(n)=\operatorname{dim}_{\mathbb{F}_{2}} \frac{2^{s-1} \mathrm{Cl}(\mathbb{Q}(\sqrt{-n}))}{2^{s} \mathrm{Cl}(\mathbb{Q}(\sqrt{-n}))}
$$

the 2^{s}-rank of the class group of $\mathbb{Q}(\sqrt{-n})$. By Gauss genus theory and Rédei's work in [R34], we can characterize $h_{2}(n)$ and $h_{4}(n)$. See [Wan16, § 3] for more details.

Proposition 5.1. We have $h_{2}(n)=k$ and $h_{4}(n)=k-\operatorname{rank}\left(\mathbf{A}, \mathbf{D}_{2} \mathbf{1}\right)$.
Denote by

$$
E=\mathscr{E}_{1,1}: y^{2}=x(x-1)(x+1)
$$

the congruent number elliptic curve and $E^{(n)}=\mathscr{E}_{n, n}$. Let (a, b, c) be a primitive triple of positive integers satisfying $a^{2}+b^{2}=2 c^{2}$. Then a, b, c are odd. Denote by $\mathcal{E}=\mathscr{E}_{a^{2}, b^{2}}, \mathcal{E}^{(n)}=\mathscr{E}_{a^{2} n, b^{2} n}$.

Theorem 5.2 ([WZ22, Theorem 4.4]). Let $n \equiv 1 \bmod 8$ be a positive square-free integer coprime with abc, where each prime factor of n is a quadratic residue modulo every odd prime factor of abc. Assume that

- $p \equiv 1 \bmod 4$ for all primes $p \mid n$;
- $\operatorname{Sel}_{2}(\mathcal{E} / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$.

Then the following are equivalent:
(1) $\operatorname{rank}_{\mathbb{Z}} \mathcal{E}^{(n)}(\mathbb{Q})=0$ and $\amalg\left(\mathcal{E}^{(n)} / \mathbb{Q}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$;
(2) $h_{4}(n)=1$ and $h_{8}(n) \equiv \frac{d-1}{4} \bmod 2$.

Here $d \neq 1, n$ is a positive factor of n such that $(d,-n)_{v}=1, \forall v$, or $(2 d,-n)_{v}=$ $1, \forall v$.

Proof. Since $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$, this result follows from Theorem 1.1 and [Wan16, Theorem 1.1] directly.
Theorem 5.3. Let $n \equiv 1 \bmod 8$ be a positive square-free integer coprime with abc, where each prime factor of n is a quadratic residue modulo every prime factor of abc. Assume that

- either n or a or b has no prime factor $\equiv 3 \bmod 4$;
- $p \equiv \pm 1 \bmod 8$ for all primes $p \mid n$;
- $\operatorname{Sel}_{2}\left(\mathcal{E}^{(2)} / \mathbb{Q}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$.

Then the following are equivalent:
(1) $\operatorname{rank}_{\mathbb{Z}} \mathcal{E}^{(2 n)}(\mathbb{Q})=0$ and $\amalg\left(\mathcal{E}^{(2 n)} / \mathbb{Q}\right)\left[2^{\infty}\right] \cong(\mathbb{Z} / 2 \mathbb{Z})^{2} ;$
(2) $h_{4}(n)=1$ and $d \equiv 9 \bmod 16$.

Here, d is the unique divisor of n such that $d \neq 1, d \equiv 1 \bmod 4$ and $(d, n)_{v}=1, \forall v$.
Proof. For any prime $q \mid c$, we have $a^{2} \equiv-b^{2} \bmod q$. Therefore $q \equiv 1 \bmod 4$ and $\left(\frac{p^{*}}{q}\right)=\left(\frac{p}{q}\right)=1$. If n or b has no prime factor $\equiv 3 \bmod 4$, then $\left(\frac{p^{*}}{q}\right)=\left(\frac{p}{q}\right)=1$ for all primes $p|n, q| b$. We apply Theorem 4.4 to $\left(e_{1}, e_{2}, e_{3}\right)=\left(2 a^{2}, 2 b^{2},-4 c^{2}\right)$, the map $\left(d_{1}, d_{2}, d_{3}\right) \mapsto\binom{\mathbf{x}}{\mathbf{z}}$ induces an isomorphism

$$
\operatorname{Sel}_{2}^{\prime}\left(\mathcal{E}^{(n)}\right) \xrightarrow{\sim} \operatorname{Ker} \mathbf{M} \quad \text { where } \quad \mathbf{M}=\left(\begin{array}{cc}
\mathbf{A}+\mathbf{D}_{2} & \mathbf{D}_{2} \\
\mathbf{D}_{-1} & \mathbf{A}^{\mathrm{T}}+\mathbf{D}_{2}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{A} & \\
\mathbf{D}_{-1} & \mathbf{A}^{\mathrm{T}}
\end{array}\right)
$$

and $d_{i} \mid n, d_{1}>0, d_{3} \equiv 1 \bmod 4$.
One can show that

$$
\operatorname{Ker} \mathbf{M} \supseteq\left\{\binom{\mathbf{0}}{\mathbf{d}},\binom{\mathbf{1}}{\mathbf{d}+\mathbf{1}}: \mathbf{d} \in \operatorname{Ker} \mathbf{A}^{\mathrm{T}}\right\} .
$$

Since $\mathbf{A 1}=\mathbf{0}$, we have $\operatorname{rank} \mathbf{A}^{\mathrm{T}}=\operatorname{rank} \mathbf{A} \leq k-1$ and then Ker \mathbf{M} has at least four vectors. Hence

$$
\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}^{\prime}\left(\mathcal{E}^{(n)}\right)=2 \Longleftrightarrow \operatorname{rank} \mathbf{A}=k-1 \Longleftrightarrow h_{4}(n)=1
$$

by Proposition 5.1.
Assume that $h_{4}(n)=1$. Note that $\left(p_{j},-n\right)_{p_{i}}=\left(p_{i}^{*}, n\right)_{p_{j}}$. Therefore, $\mathbf{A}^{\mathrm{T}} \mathbf{d}=0$ if and only if $(d, n)_{p}=1$ for all $p \mid n$, where $d=\left(p_{1}^{*}\right)^{s_{1}} \cdots\left(p_{k}^{*}\right)^{s_{k}}, \mathbf{d}=\left(s_{1}, \ldots, s_{k}\right)^{\mathrm{T}}$. Hence $\operatorname{Sel}_{2}^{\prime}\left(\mathcal{E}^{(n)}\right)$ is generated by $\Lambda=(n, 1, n)$ and $\Lambda^{\prime}=(1, d, d)$.

By Theorem 1.2, we may assume that $a=b=c=1$. Recall that $D_{\Lambda}^{(n)}$ is defined as

$$
\begin{cases}H_{1}: & 2 n t^{2}+u_{2}^{2}-n u_{3}^{2}=0 \\ H_{2}: & 2 t^{2}+u_{3}^{2}-u_{1}^{2}=0 \\ H_{3}: & -4 n t^{2}+n u_{1}^{2}-u_{2}^{2}=0\end{cases}
$$

Choose

$$
\begin{array}{ll}
Q_{2}=(0,1,1) \in H_{2}(\mathbb{Q}), & L_{2}=u_{1}-u_{3} \\
Q_{3}=(1,0,-2) \in H_{3}(\mathbb{Q}), & L_{3}=2 t+u_{1}
\end{array}
$$

By Lemma 2.2, we have

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{E^{(n)}}=\sum_{v \mid 2 n \infty}\left[L_{2} L_{3}\left(P_{v}\right), d\right]_{v}
$$

for any $P_{v} \in D_{\Lambda}^{(n)}\left(\mathbb{Q}_{v}\right)$.
For $v \mid n \infty$, take $P_{v}=(1,2,0,-\sqrt{2})$, then $L_{2} L_{3}\left(P_{v}\right)=4(2+\sqrt{2})$ and $\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{v}=$ $[2+\sqrt{2}, d]_{v}$. For $v=2$, take $P_{2}=(0,1, \sqrt{n},-1)$. Then $L_{2} L_{3}\left(P_{2}\right)=2$ and $\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{2}=$ $[2, d]_{2}=0$. Hence $\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{E^{(n)}}=\left[\frac{2+\sqrt{2}}{|d|}\right] \equiv \frac{d-1}{8} \bmod 2$ by Lemma 5.4. Conclude the results by Lemma 2.3.

If a has no prime factor $\equiv 3 \bmod 4$, then $\left(\frac{p^{*}}{q}\right)=\left(\frac{p}{q}\right)=1$ for all primes $p|n, q| a$. We apply Theorem 4.5 to $\left(e_{1}, e_{2}, e_{3}\right)=\left(-2 b^{2},-2 a^{2}, 4 c^{2}\right)$. Then we can prove the result similarly.

Lemma 5.4. Let $m \equiv 1 \bmod 8$ be a square-free integer with prime factors congruent to ± 1 modulo 8 . Then $m \equiv 1 \bmod 16$ if and only if $\left(\frac{2+\sqrt{2}}{|m|}\right)=1$.

Proof. Write $m=u^{2}-2 w^{2} \equiv 1 \bmod 8$. Denote by $\mu=u+w$ and $\lambda=u+2 w$. Then $m=2 \mu^{2}-\lambda^{2}$ and u, μ, λ are odd. Let w^{\prime} be the positive odd part of w. Then

$$
\begin{gathered}
\left(\frac{w}{|m|}\right)=\left(\frac{m}{w^{\prime}}\right)=\left(\frac{u^{2}-2 w^{2}}{w^{\prime}}\right)=1, \\
\left(\frac{\lambda}{|m|}\right)=\left(\frac{m}{|\lambda|}\right)=\left(\frac{2 \mu^{2}-\lambda^{2}}{\lambda}\right)=\left(\frac{2}{|\lambda|}\right)
\end{gathered}
$$

and $\lambda=u+2 w \equiv(2 \pm \sqrt{2}) w \bmod m$. Hence

$$
\left(\frac{2+\sqrt{2}}{|m|}\right)=\left(\frac{2}{|\lambda|}\right)
$$

Since $m+\lambda^{2}=2 \mu^{2} \equiv 2 \bmod 16$, we have

$$
m \equiv 1 \bmod 16 \Longleftrightarrow \lambda \equiv \pm 1 \bmod 8 \Longleftrightarrow\left(\frac{2}{|\lambda|}\right)=1 \Longleftrightarrow\left(\frac{2+\sqrt{2}}{|m|}\right)=1
$$

Acknowledgements

The author would like to thank Zhangjie Wang for helpful discussions and the anonymous reviewer for useful suggestions.

The author is partially supported by the National Natural Science Foundation of China (Grant No. 12001510) and the Fundamental Research Funds for the Central Universities (JZ2023HGTB0217).

References

[Cas98] J. W. S. Cassels. Second descents for elliptic curves. J. Reine Angew. Math., 494:101-127, 1998. Dedicated to Martin Kneser on the occasion of his 70th birthday.
[Chi20] Ching-Heng Chiu. Strong Selmer companion elliptic curves. J. Number Theory, 217:376421, 2020.
[Kis04] H. Kisilevsky. Rank determines semi-stable conductor. J. Number Theory, 104(2):279286, 2004.
[MR15] Barry Mazur and Karl Rubin. Selmer companion curves. Trans. Amer. Math. Soc., 367(1):401-421, 2015.
[Ono96] Ken Ono. Euler's concordant forms. Acta Arith., 78(2):101-123, 1996.
[PZ89] Alexey N. Papikian and Yuri G. Zarhin. Finiteness problems in Diophantine geometry. Amer. Math. Soc. Transl., 143:35-102, 1989
[R34] L. Rédei. Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper. J. Reine Angew. Math., 171:55-60, 1934.
[Sil09] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.
[Wan16] Zhang Jie Wang. Congruent elliptic curves with non-trivial Shafarevich-Tate groups. Sci. China Math., 59(11):2145-2166, 2016.
[WZ22] Zhangjie Wang and Shenxing Zhang. On the quadratic twist of elliptic curves with full 2-torsion. preprint, 2022.
[Yu19] Myungjun Yu. 2-Selmer near-companion curves. Trans. Amer. Math. Soc., 372(1):425440, 2019.

School of Mathematics, Hefei University of Technology, Hefei, Anhui 230000, China
Email address: zhangshenxing@hfut.edu.cn

