
ON A COMPARISON OF CASSELS PAIRINGS OF DIFFERENT
ELLIPTIC CURVES

SHENXING ZHANG

Abstract. Let e1, e2, e3 be nonzero integers satisfying e1 + e2 + e3 = 0. Let
(a, b, c) be a primitive triple of odd integers satisfying e1a2 + e2b2 + e3c2 = 0.
Denote by E : y2 = x(x−e1)(x+e2) and E : y2 = x(x−e1a2)(x+e2b2). Assume
that the 2-Selmer groups of E and E are minimal. Let n be a positive square-
free odd integer, where the prime factors of n are nonzero quadratic residues
modulo each odd prime factor of e1e2e3abc. Then under certain conditions,
the 2-Selmer group and the Cassels pairing of the quadratic twist E(n) coincide
with those of E(n). As a corollary, E(n) has Mordell-Weil rank zero without
order 4 element in its Shafarevich-Tate group, if and only if these hold for
E(n). We also give some applications for the congruent number elliptic curve.

1. Introduction

The quadratic twists family of a given elliptic curve are studied in many arti-
cles. What we want to study is when two different families have similar arithmetic
properties. In [PZ89], given abelian varieties A1 and A2 over K whose ranks agree
over each finite extension of K, Zarhin asks if A1 is necessarily isogenous to A2.
In [MR15], Mazur and Rubin consider the Selmer groups instead of ranks. They
give a sufficient condition on when the Selmer ranks of elliptic curves E1 and E2

agree over at most quadratic extension of K. In particular, there are non-isogenous
pk-Selmer companions. It is also known that if the ℓ-Selmer ranks of E1 and E2

agree over each finite extension of K for all but finitely many primes ℓ, then E1

and E2 are K-isogenous, see [Chi20]. For related results, see also [Kis04, Yu19].
In this paper, we will study when the ranks of elliptic curves with full 2-torsion

agree over a set of quadratic fields. More precisely, let
E = Ee1,e2 : y2 = x(x− e1)(x+ e2)

be an elliptic curve defined over Q with full 2-torsion, where e1, e2, e3 = −e1 − e2
are non-zero integers. Let E(n) = Ee1n,e2n be a quadratic twist of E, where n is an
odd positive square-free integer. Let (a, b, c) be a primitive triple of odd integers
satisfying

e1a
2 + e2b

2 + e3c
2 = 0.

Denote by E = Ee1a2,e2b2 and E(n) = Ee1na2,e2nb2 its quadratic twist.
Since we want to compare E(n) for different triples (e1, e2, e3), we will assume

that
gcd(e1, e2, e3) = 1 or 2
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for simplicity. By a translation of x, one can show that E ∼= Ee2,e3
∼= Ee3,e1 . This

gives a symmetry on (e1, e2, e3). Without loss of generality, we may assume that
v2(e3) is maximal among v2(ei), where v2 is the normalized 2-adic valuation. Then
v2(e1) = v2(e2) < v2(e3). We will write 2v2(x) ‖ x.

Denote by Sel2(E/Q) the 2-Selmer group of E. Then we have an exact sequence
0 → E(Q)/2E(Q) → Sel2(E/Q) → X(E/Q)[2] → 0.

If E has no rational point of order 4, then E(Q)[2∞] ∼= (Z/2Z)2 since it has full
2-torsion. Therefore, Sel2(E/Q) contains E(Q)[2] ∼= (Z/2Z)2.

The following theorems generalize the observations in [WZ22], which give a re-
lation between E(n) and E(n).

Theorem 1.1. Let n be an odd positive square-free integer coprime with e1e2e3abc,
whose prime factors are quadratic residues modulo each odd prime factor of e1e2e3abc.
Assume that

• e1, e2 are odd and 2 ‖ e3.
If Sel2(E/Q) ∼= Sel2(E/Q) ∼= (Z/2Z)2, then the following are equivalent:

(1) rankZ E
(n)(Q) = 0 and X

(
E(n)/Q

) ∼= (Z/2Z)2t;
(2) rankZ E(n)(Q) = 0 and X

(
E(n)/Q

) ∼= (Z/2Z)2t.

When gcd(e1, e2, e3) = 2, E(n) = E
(2n)
e1/2,e2/2

is an even quadratic twist of an
elliptic curve in Theorem 1.1. In this case, an additional condition is required.

Theorem 1.2. Let n be an odd positive square-free integer coprime with e1e2e3abc,
whose prime factors are quadratic residues modulo each odd prime factor of e1e2e3abc.
Assume that

• 2 ‖ e1, 2 ‖ e2, 4 | e3;
• both E and E(n) have no rational point of order 4;
• if e2 > 0 and e3 < 0, then every prime factor of n is congruent to 1 modulo
4, or every odd prime factor of e2e3bc is congruent to 1 modulo 4;

• if e3 > 0 and e1 < 0, then every prime factor of n is congruent to 1 modulo
4, or every odd prime factor of e1e3ac is congruent to 1 modulo 4;

• if e1 > 0 and e2 < 0, then every prime factor of n is congruent to 1 modulo
4.

If Sel2(E/Q) ∼= Sel2(E/Q) ∼= (Z/2Z)2, then the following are equivalent:
(1) rankZ E

(n)(Q) = 0 and X
(
E(n)/Q

) ∼= (Z/2Z)2t;
(2) rankZ E(n)(Q) = 0 and X

(
E(n)/Q

) ∼= (Z/2Z)2t.

For general triples (e1, e2, e3), we require that the prime factors of n are congruent
to 1 modulo 8.

Theorem 1.3. Let n be an odd positive square-free integer coprime with e1e2e3abc,
whose prime factors are quadratic residues modulo each odd prime factor of e1e2e3abc.
Assume that

• both E and E(n) have no rational point of order 4;
• every prime factor of n is congruent to 1 modulo 8.

If Sel2(E/Q) ∼= Sel2(E/Q) ∼= (Z/2Z)2, then the following are equivalent:
(1) rankZ E

(n)(Q) = 0 and X
(
E(n)/Q

) ∼= (Z/2Z)2t;
(2) rankZ E(n)(Q) = 0 and X

(
E(n)/Q

) ∼= (Z/2Z)2t.
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In each case, we will study the local solvability of homogeneous spaces and show
the identical structure of 2-Selmer groups. Then we will use Lemmas 2.7 and 2.8 to
show the identical structure of Cassels pairings. The main difference between these
theorems is the local solvability and the Cassels pairing at the place 2. We will also
give applications for the congruent number elliptic curve, see Theorems 5.2 and 5.3.

The symbols we will use are listed here.
• vp the normalized p-adic valuation.
• gcd(m1, . . . ,mt) the greatest common divisor of integers m1, . . . ,mt.
• (α, β)v ∈ {±1} the Hilbert symbol, α, β ∈ Q×

v .
• [α, β]v ∈ F2 the additive Hilbert symbol, i.e., (α, β)v = (−1)[α,β]v .
•
(

α
β

)
=
∏

p|β(α, β)p ∈ {±1} the Jacobi symbol, where α is coprime with
β > 0.

•
[
α
β

]
=
∑

p|β [α, β]p ∈ F2 the additive Jacobi symbol, where α is coprime
with β > 0.

• m∗ = (−1,m)2m ≡ 1 mod 4 for nonzero odd integer m.
• Λ = (d1, d2, d3) a triple of square-free integers, where d1d2d3 is a square.
• DΛ the homogeneous space associated to E and Λ, see (2.1).
• Sel′2(E ) the pure 2-Selmer group of E , see (2.2). We will simply write
Λ ∈ Sel′2(E ) the class of Λ ∈ Sel2(E /Q) for convention.

• 0 = (0, . . . , 0)T and 1 = (1, . . . , 1)T.
• I the identity matrix and O the zero matrix.
• A = An a matrix associated to n, see (2.5).
• Du = diag

{[
u
p1

]
, . . . ,

[
u
pk

]}
, see (2.6).

2. The general case

2.1. Classical 2-descent. As shown in [Cas98], the 2-Selmer group Sel2(E/Q) can
be identified with{

Λ = (d1, d2, d3) ∈
(
Q×/Q×2

)3
: DΛ(AQ) 6= ∅, d1d2d3 ≡ 1 mod Q×2

}
,

where DΛ is a genus one curve defined by

(2.1)


H1 : e1t

2 + d2u
2
2 − d3u

2
3 = 0,

H2 : e2t
2 + d3u

2
3 − d1u

2
1 = 0,

H3 : e3t
2 + d1u

2
1 − d2u

2
2 = 0.

Under this identification, the points O, (e1, 0), (−e2, 0), (0, 0) and other point (x, y) ∈
E(Q) correspond to

(1, 1, 1), (−e3,−e1e3, e1), (−e2e3, e3,−e2), (e2,−e1,−e1e2)

and (x+ e2, x− e1, x) respectively.
Denote by

(2.2) Sel′2(E) :=
Sel2(E/Q)

E(Q)tors/2E(Q)tors

the pure 2-Selmer group of E defined over Q.

Lemma 2.1 ([Ono96]). E(Q) has a point of order 4 if and only if one of the three
pairs (−e1, e2), (−e2, e3) and (−e3, e1) consists of squares of integers.
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If E has no rational point of order 4, then Sel2(E/Q) contains E(Q)[2∞] =
E(Q)[2] ∼= (Z/2Z)2 and therefore Sel′2(E) = Sel2(E/Q)/E(Q)[2]. Cassels in [Cas98]
defined a skew-symmetric bilinear pairing 〈−,−〉 on the F2-vector space Sel′2(E).
We will write it additively. For any Λ ∈ Sel2(E), choose P = (Pv)v ∈ DΛ(AQ).
Since Hi is locally solvable everywhere, there exists Qi ∈ Hi(Q) by Hasse-Minkowski
principle. Let Li be a linear form in three variables such that Li = 0 defines the
tangent plane of Hi at Qi. For any Λ′ = (d′1, d

′
2, d

′
3) ∈ Sel2(E), define

〈Λ,Λ′〉E =
∑
v

〈Λ,Λ′〉E,v ∈ F2, where 〈Λ,Λ′〉E,v =

3∑
i=1

[
Li(Pv), d

′
i

]
v
.

This pairing is independent of the choice of P and Qi, and is trivial on E(Q)[2].
We will omit the subscript E if there is no confusion.
Lemma 2.2 ([Cas98, Lemma 7.2]). The local Cassels pairing 〈Λ,Λ′〉E,p = 0 if

• p ∤ 2∞,
• the coefficients of Hi and Li are all integral at p, and
• DΛ and Li, taken modulo p, define a curve of genus 1 over Fp together with

tangents to it.
Lemma 2.3 ([Wan16, p. 2157]). If E has no rational point of order 4, then the
following are equivalent:

(1) rankZ E(Q) = 0 and X(E/Q)[2∞] ∼= (Z/2Z)2t;
(2) Sel′2(E) has dimension 2t and the Cassels pairing on it is non-degenerate.

2.2. Homogeneous spaces. Let’s consider the quadratic twist E(n). The homo-
geneous space D

(n)
Λ associated to Λ = (d1, d2, d3) is

H1 : e1nt
2 + d2u

2
2 − d3u

2
3 = 0,

H2 : e2nt
2 + d3u

2
3 − d1u

2
1 = 0,

H3 : e3nt
2 + d1u

2
1 − d2u

2
2 = 0.

By classical descent theory, if p ∤ 2e1e2e3n, then D
(n)
Λ (Qp) is non-empty if and only

if p ∤ d1d2d3, see [Sil09, Theorem X.1.1, Corollary X.4.4]. Hence we may assume
that d1, d2, d3 are square-free divisors of 2e1e2e3n from now on.

Lemma 2.4. Let Λ = (d1, d2, d3). Then D
(n)
Λ (R) 6= ∅ if and only if

• d1 > 0, if e2 > 0, e3 < 0;
• d2 > 0, if e3 > 0, e1 < 0;
• d3 > 0, if e1 > 0, e2 < 0.

Proof. The proof is similar to [WZ22, Lemma 3.1(4)], which is easy to get. □
Lemma 2.5. Let Λ = (d1, d2, d3) with all square-free di. Let n be a positive square-
free integer coprime with e1e2e3 and p an odd prime factor of n. Then D

(n)
Λ (Qp) 6= ∅

if and only if
•
(

d1

p

)
=
(

d2

p

)
=
(

d3

p

)
= 1, if p ∤ d1d2d3;

•
(

−e2e3d1

p

)
=
(

e3n/d2

p

)
=
(

−e2n/d3

p

)
= 1, if p ∤ d1, p | d2, p | d3;

•
(

−e3n/d1

p

)
=
(

−e3e1d2

p

)
=
(

e1n/d3

p

)
= 1, if p | d1, p ∤ d2, p | d3;

•
(

e2n/d1

p

)
=
(

−e1n/d2

p

)
=
(

−e1e2d3

p

)
= 1, if p | d1, p | d2, p ∤ d3.
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Proof. Assume that p ∤ d1, p ∤ d2, p ∤ d3. If D(n)
Λ (Qp) 6= ∅, then each Hi(Qp) 6= ∅

and
(

d2d3

p

)
=
(

d1d3

p

)
=
(

d1d2

p

)
= 1. That’s to say,

(
d1

p

)
=
(

d2

p

)
=
(

d3

p

)
=

1. Conversely, if
(

d1

p

)
=
(

d2

p

)
=
(

d3

p

)
= 1, then (0,

√
1/d1,

√
1/d2,

√
1/d3) ∈

D
(n)
Λ (Qp).
Assume that p ∤ d1, p | d2, p | d3. Then D

(n)
Λ (Qp) 6= ∅ if and only if D(n)

Λ′ (Qp) 6= ∅,
where

Λ′ = Λ · (−e2e3, e3n,−e2n) = (−e2e3d1, e3n/d2,−e2n/d3).

Hence this case can be reduced to the case p ∤ d1d2d3. The rest cases can be
obtained by symmetry. □

Let n = p1 · · · pk be a prime decomposition of n. For Λ = (d1, d2, d3) with
square-free di | 2e1e2e3n, denote by

(2.3) xi = vpi
(d1), yi = vpi

(d2), zi = vpi
(d3).

Then x+ y + z = 0, where

x = (x1, . . . , xk)
T, y = (y1, . . . , yk)

T, z = (z1, . . . , zk)
T ∈ Fk

2 .

Write
d1 = px1

1 · · · pxk

k · d̃1,

d2 = py1

1 · · · pyk

k · d̃2,

d3 = pz11 · · · pzkk · d̃3.

(2.4)

Then d̃1d̃2d̃3 ∈ Q×2.
Denote by

(2.5) A = An =
(
[pj ,−n]pi

)
i,j

∈ Mk(F2)

and

(2.6) Du = diag

{[
u

p1

]
, · · · ,

[
u

pk

]}
∈ Mk(F2).

Theorem 2.6. Let n be an odd positive square-free integer coprime with e1e2e3,
whose prime factors are quadratic residues modulo each odd prime factor of e1e2e3.
Assume that

• both E and E(n) have no rational point of order 4;
• every prime factor of n is congruent to 1 modulo 8.

If Sel2(E/Q) ∼= (Z/2Z)2, then the map (d1, d2, d3) 7→
(
x
y

)
induces an isomorphism

Sel′2
(
E(n)

) ∼−→ Ker

(
A

A

)
,

where 0 < di | n.

Proof. Let Λ = (d1, d2, d3) with square-free di | 2e1e2e3n and denote by Λ̃ =

(d̃1, d̃2, d̃3). Then D
(n)
Λ (R) 6= ∅ if and only if D(1)

Λ̃
(R) 6= ∅ by Lemma 2.4 and the

fact sgn(d̃i) = sgn(di).
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If q is a prime factor of 2e1e2e3, then n, di/d̃i ∈ Q×2
q . Therefore,

(t, u1, u2, u3) ∈ D
(n)
Λ (Qq) ⇐⇒

(
t
√
n, u1

√
d1

d̃1
, u2

√
d2

d̃2
, u3

√
d3

d̃3

)
∈ D

(1)

Λ̃
(Qq).

Hence Λ ∈ Sel2
(
E(n)/Q

)
if and only if Λ̃ ∈ Sel2(E/Q) and D

(n)
Λ is locally solvable

at each p | n.
If Λ ∈ Sel2

(
E(n)/Q

)
, then Λ̃ ∈ Sel2(E/Q). By our assumptions,

Λ̃ = (1, 1, 1), (−e3,−e1e3, e1), (−e2e3, e3,−e2) or (e2,−e1,−e1e2)

is 2-torsion. If Λ̃ = (−e3,−e1e3, e1), then

Λ · (−e3n,−e1e3, e1n) =
( k∏
i=1

p1−xi
i ,

k∏
i=1

pyi

i ,

k∏
i=1

p1−zi
i

)
.

The other cases are similar. Hence each element in Sel′2
(
E(n)

)
has a unique repre-

sentative (d1, d2, d3) with 0 < di | n. Based on this, we can express Sel′2
(
E(n)

)
in

terms of linear algebra by Lemma 2.5 after a translation of languages:

Sel′2
(
E(n)

) ∼−→ Mn, where Mn =

(
A+D−e3 D−e2e3

D−e1e3 A+De3

)
.

Since
(

p
q

)
= 1 for any odd primes p | n, q | e1e2e3 and

(
±1
p

)
=
(

±2
p

)
= 1, we have(

±ei
p

)
= 1. Therefore, D±ei = O and Mn = diag{A,A}. □

2.3. The Cassels pairing. Let (a, b, c) be a primitive triple of odd integers satis-
fying

e1a
2 + e2b

2 + e3c
2 = 0.

Denote by E = Ee1a2,e2b2 and E(n) = Ee1a2n,e2b2n.

Lemma 2.7. Assume that all prime factors of n are nonzero quadratic residues
modulo each odd prime factor of e1e2e3. If a ≡ b ≡ c ≡ 1 mod 4, then

1

8
(a+ b)(b+ c)(c+ a) ≡ 1 mod 4

is a quadratic residue modulo each prime factor of n.

Proof. Let α, β be coprime integers satisfying
β

α
=

e1(a− c)

e2(b+ c)
.

Then α is odd and β is even. It’s not hard to show that
λa = e1α

2 + 2e2αβ − e2β
2 ≡ e1 mod 4,

λb = e1α
2 − 2e1αβ − e2β

2 ≡ e1 mod 4,

λc = e1α
2 + e2β

2 ≡ e1 mod 4,

for some λ ≡ e1 mod 4. Then
λ(a+ b) = 2(α− β)(e1α+ e2β),

λ(b+ c) = 2e1α(α− β),

λ(c+ a) = 2α(e1α+ e2β)
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and
1

8
(a+ b)(b+ c)(c+ a) = e1λ

(
λ−2α(α− β)(e1α+ e2β)

)2 ≡ 1 mod 4.

Let q be a prime factor of λ. Then

q | gcd
(
λ(a+ b), λ(a+ c)

)
= 2(e1α+ e2β).

If q ∤ e1, then q | α(α − β). If q | α, then q | e2β, q | e2; if q | (α − β), then
q | e2(α− β) + (e1α+ e2β) = −e3α, q | e3. Hence q | e1e2e3.

Let p be a prime factor of n. Since e1λ ≡ 1 mod 4 and
(

p
q

)
= 1 for any odd

prime q | e1e2e3, we have(
e1λ

p

)
=

(
p

e1λ

)
=
∏
q|e1λ

(
p

q

)vq(e1λ)

= 1.

Hence (a+ b)(b+ c)(c+ a)/8 is a quadratic residue modulo p. □

Lemma 2.8. We have

(ax+ by + cz)(x+ y + z)− 1

2
(a+ b)(b+ c)(c+ a)

(
x

b+ c
+

y

c+ a
+

z

a+ b

)2

=
1

2
(e1a+ e2b+ e3c)

(
x2

e1
+

y2

e2
+

z2

e3

)
.

Proof. The coefficient of x2 on the left-hand side is

a− (a+ b)(a+ c)

2(b+ c)
=

a(b+ c)− bc− a2

2(b+ c)
=

e1a(b+ c)− e1bc− e1a
2

2e1(b+ c)

=
e1a(b+ c) + (e2 + e3)bc+ e2b

2 + e3c
2

2e1(b+ c)
=

e1a+ e2b+ e3c

2e1

and the coefficient of yz on the left-hand side is zero. The equality then follows by
symmetry. □

Proof of Theorem 1.3. Since E has no rational point of order 4, none of (−e1, e2),
(−e2, e3), (−e3, e1) consists of squares by Lemma 2.1. Therefore, none of (−e1a

2, e2b
2),

(−e2b
2, e3c

2), (−e3c
2, e1a

2) consists of squares and E has no rational point of order
4. Similarly, E(n) has no rational point of order 4.

By choosing suitable signs, we may assume that a ≡ b ≡ c ≡ 1 mod 4. Since the
matrix in Theorem 2.6 does not depend on a, b, c, we have a canonical isomorphism

Sel′2
(
E(n)

) ∼= Sel′2
(
E(n)

)
.

Let Λ = (d1, d2, d3),Λ
′ = (d′1, d

′
2, d

′
3) ∈ Sel′2

(
E(n)

)
with 0 < di, d

′
i | n. We will

denote by D,H,Q,L, P the corresponding symbols for E and D,H,Q,L,P the
corresponding symbols for E in the calculation of Cassels pairing. Then D(n)

Λ is
defined as 

H1 : e1a
2nt2 + d2u

2
2 − d3u

2
3 = 0,

H2 : e2b
2nt2 + d3u

2
3 − d1u

2
1 = 0,

H3 : e3c
2nt2 + d1u

2
1 − d2u

2
2 = 0.
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Let (αi, βi, γi) be primitive triples of integers satisfying

e1nα
2
1 + d2β

2
1 − d3γ

2
1 = 0,

e2nα
2
2 + d3β

2
2 − d1γ

2
2 = 0,

e3nα
2
3 + d1β

2
3 − d2γ

2
3 = 0.

Choose
Q1 = (α1, aβ1, aγ1) ∈ H1(Q), L1 = e1anα1t+ d2β1u2 − d3γ1u3,

Q2 = (α2, bβ2, bγ2) ∈ H2(Q), L2 = e2bnα2t+ d3β2u3 − d1γ2u1,

Q3 = (α3, cβ3, cγ3) ∈ H3(Q), L3 = e3cnα3t+ d1β3u1 − d2γ3u2.

(i) The case v | 2e1e2e3abc. Since each prime factor of n is a square in Qv, so is
d′i. Therefore, [Li(Pv), d

′
i]v = 0 = [Li(Pv), d

′
i]v.

(ii) The case v = p | n. Since a ≡ 1 mod 4 and p is a quadratic residue modulo
every odd prime factor q of abc, we have

[a, p]p =
[a
p

]
=
[p
a

]
=
∑
q|a

vq(a)
[p
q

]
= 0.

Therefore [a, d′i]p = 0. Similarly, [b, d′i]p = [c, d′i]p = 0.
(ii-a) The case p ∤ d1d2d3. Take Pp = (0, 1/

√
d1, 1/

√
d2, 1/

√
d3) = Pp. Then

L1(Pp) = β1

√
d2 − γ1

√
d3 = L1(Pp).

Similarly, L2(Pp) = L2(Pp) and L3(Pp) = L3(Pp).
(ii-b) The case p ∤ d1, p | d2, p | d3. Then e3n/d2,−e2n/d3 ∈ Q×2

p by Lemma 2.5.
Take Pp = (1, 0, cu, bv) where u2 = e3n/d2, v

2 = −e2n/d3. Then Pp = (1, 0, u, v)
and

L1(Pp) = ae1nα1 − bd3γ1v + cd2β1u,

L2(Pp) = be2nα2 + bd3β2v = bL2(Pp),

L3(Pp) = ce3nα3 − cd2γ3u = cL3(Pp).

Since
(e1nα1)

2

e1
+

(−d3γ1v)
2

e2
+

(d2β1u)
2

e3
= n(e1nα

2
1 − d3γ

2
1 + d2β

2
1) = 0,

we have

L1(Pp)L1(Pp) =
1

2
(a+ b)(a+ c)(b+ c)

(
e1nα1

b+ c
+

d2β1u

a+ b
− d3γ1v

a+ c

)2

by Lemma 2.8. Therefore,

[L1(Pp), d
′
1]p = [L1(Pp), d

′
1]p + [2(a+ b)(a+ c)(b+ c), d′1]p = [L1(Pp), d

′
1],

[L2(Pp), d
′
2]p = [L2(Pp), d

′
2]p + [b, d′2]p = [L2(Pp), d

′
2]p,

[L3(Pp), d
′
3]p = [L3(Pp), d

′
3]p + [c, d′3]p = [L3(Pp), d

′
3]p

by Lemma 2.7.
(ii-c) The case p | d1, p ∤ d2, p | d3, and the case p | d1, p | d2, p ∤ d3 can be proved

similarly by the symmetry of ei.
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Now we have

〈Λ,Λ′〉E(n) =
∑

v|2e1e2e3abcn∞

3∑
i=1

[
Li(Pv), d

′
i

]
v
=
∑
p|n

3∑
i=1

[
Li(Pp), d

′
i

]
p

=
∑
p|n

3∑
i=1

[
Li(Pp), d

′
i

]
p
= 〈Λ,Λ′〉E(n)

by Lemma 2.2. In other words, the Cassels pairings on Sel′2
(
E(n)

)
and Sel′2

(
E(n)

)
are same under the identity Sel′2

(
E(n)

) ∼= Sel′2
(
E(n)

)
. Since both E(n) and E(n)

have no rational point of order 4, this theorem follows from Lemma 2.3. □

3. The odd case with 2 ‖ e3

Assume that e1, e2 are odd and 2 ‖ e3. Let n be an odd positive square-free inte-
ger. Let Λ = (d1, d2, d3) where d1, d2, d3 are square-free integers dividing 2e1e2e3n.

3.1. Homogeneous spaces.

Lemma 3.1. If D(n)
Λ (Q2) 6= ∅, then d3 is odd.

Proof. The proof is similar to [WZ22, Lemma 3.1(2)]. Since we are dealing with
homogeneous spaces, we may assume that t, u1, u2, u3 are 2-adic integers and at least
one of them is a 2-adic unit. Suppose that D

(n)
Λ (Q2) 6= ∅. If 2 | d1, 2 ∤ d2, 2 | d3,

then u2 is even by H3 and t is even by H2. Therefore, u3 is even by H1 and u1 is
even by H2, which is impossible. The case 2 ∤ d1, 2 | d2, 2 | d3 is similar. Hence d3
is odd. □

Since the torsion (−e3n,−e1e3, e1n) has 2-adic valuation (1, 1, 0), any element
in the pure 2-Selmer group Sel′2

(
E(n)

)
has a representative Λ = (d1, d2, d3) with

odd di | e1e2e3n.

Lemma 3.2. Let Λ = (d1, d2, d3) where d1, d2, d3 are odd. If D(n)
Λ is locally solvable

at all places v 6= 2, then D
(n)
Λ is also locally solvable at v = 2.

Proof. The proof is similar to [WZ22, Lemma 3.4]. Since D
(n)
Λ (Qv) 6= ∅ for all

places v 6= 2, each Hi is locally solvable at v 6= 2. By the product formula of
Hilbert symbols, Hi is also locally solvable at 2. In other words,

[e1nd3, d1]2 = [e2nd1, d2]2 = [e3nd2, d3]2 = 0.

(i) If (d1, d2, d3) ≡ (1, 1, 1) mod 4, then 0 = [e3nd2, d3]2 = [2, d3]2 and we have
d3 ≡ 1 mod 8. Therefore, d1 ≡ d2 mod 8. If d1 ≡ d2 ≡ 1 mod 8, take

t = 0, u1 =
√
d3/d1, u2 =

√
d3/d2, u3 = 1.

If d1 ≡ d2 ≡ 5 mod 8, take

t = 2, u1 =
√

(d3 + 4e2n)/d1, u2 =
√

(d3 − 4e1n)/d2, u3 = 1.

(ii) If (d1, d2, d3) ≡ (−1,−1, 1) mod 4, then d3 ≡ 1 mod 8 similarly. Since
[e1n,−1]2 = [e1nd3, d1]2 = 0 = [e2nd1, d2]2 = [−e2n,−1]2,

we have e1n ≡ −e2n ≡ 1 mod 4. This implies that 4 | (e1 + e2) = −e3, which is
impossible.
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(iii) If d3 ≡ −1 mod 4, then [e3nd2, d3]2 = 0, e3nd2 ≡ d3 + 3 mod 8 and

(d1 − e2n)− (d2 + e1n) = d1 − d2 + e3n ≡ 2(d1 + d2) ≡ 0 mod 8.

If (d1, d2, d3) ≡ (1,−1,−1) mod 4, then [e2n,−1]2 = 0 and e2n ≡ d1 mod 4. If
(d1, d2, d3) ≡ (−1, 1,−1) mod 4, then [−e1n,−1]2 = 0 and e1n ≡ −d2 mod 4. If
d2 + e1n ≡ d1 − e2n ≡ 0 mod 8, take

t = 1, u1 =
√
e2n/d1, u2 =

√
−e1n/d2, u3 = 0.

If d2 + e1n ≡ d1 − e2n ≡ 4 mod 8, take

t = 1, u1 =
√

(4d3 + e2n)/d1, u2 =
√

(4d3 − e1n)/d2, u3 = 2.

Hence D
(n)
Λ is locally solvable at v = 2. □

Let Λ = (d1, d2, d3) with odd square-free di | e1e2e3n. We will use the notations
x,y, z, d̃i in (2.3) and (2.4).

Theorem 3.3. Let n be an odd positive square-free integer coprime with e1e2e3,
whose prime factors are quadratic residues modulo each odd prime factor of e1e2e3.
If Sel2(E/Q) ∼= (Z/2Z)2, then the map (d1, d2, d3) 7→

(
x
y

)
induces an isomorphism

Sel′2
(
E(n)

) ∼−→ Ker

(
A+D−e3 D−e2e3

D−e1e3 A+De3

)
,

where 0 < di | n.

Proof. Since e1, e2 are odd and 2 ‖ e3, neither (−ne2, ne3) nor (−ne3, ne1) consists
of squares. If (−ne1, ne2) consists of squares, then e1 ≡ −e2 mod 4 and 4 | e3,
which is impossible. Hence E(Q) contains no point of order 4 by Lemma 2.1.

Let Λ = (d1, d2, d3) with odd square-free di | e1e2e3n and denote by Λ̃ =

(d̃1, d̃2, d̃3). Similar to the proof of Theorem 2.6, D
(n)
Λ (Qv) 6= ∅ if and only if

D
(1)

Λ̃
(Qv) 6= ∅ for v = ∞ or odd v | e1e2e3. Hence Λ ∈ Sel2

(
E(n)/Q

)
if and only if

Λ̃ ∈ Sel2(E/Q) and D
(n)
Λ is locally solvable at each p | n by Lemmas 3.1 and 3.2.

If Λ ∈ Sel2
(
E(n)/Q

)
, then Λ̃ ∈ Sel2(E/Q). By our assumptions, Λ̃ is 2-torsion,

which should be (1, 1, 1) or (e2,−e1,−e1e2). If Λ̃ = (e2,−e1,−e1e2), then

Λ · (ne2,−ne1,−e1e2) =
( k∏
i=1

p1−xi
i ,

k∏
i=1

p1−yi

i ,

k∏
i=1

pzii

)
.

Hence each element in Sel′2
(
E(n)

)
has a unique representative (d1, d2, d3) with 0 <

di | n. Based on this, we can express Sel′2
(
E(n)

)
in terms of linear algebra by

Lemma 2.5 after a translation of languages. □

Remark 3.4. Since
(

p
q

)
= 1 for any odd primes p | n, q | e1e2e3, we have De = Du,

where u ∈ {±1,±2} such that e/u ≡ 1 mod 4 for any square-free e | e1e2e3.
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3.2. The Cassels pairing. Let (a, b, c) be a primitive triple of integers satisfying
e1a

2 + e2b
2 + e3c

2 = 0.

Then a, b, c are odd. Denote by E = Ee1a2,e2b2 and E(n) = Ee1a2n,e2b2n.

Proof of Theorem 1.1. As shown in the proof of Theorem 3.3, both E(n) and E(Q)(n)

have no rational point of order 4. Since the matrix in Theorem 3.3 does not depend
on a, b, c, we have a canonical isomorphism

Sel′2
(
E(n)

) ∼= Sel′2
(
E(n)

)
.

By choosing suitable signs, we may assume that a ≡ b ≡ c ≡ 1 mod 4. Let Λ =
(d1, d2, d3),Λ

′ = (d′1, d
′
2, d

′
3) ∈ Sel′2

(
E(n)

)
with 0 < di, d

′
i | n. We will use the

notations D,H,Q,L,P, D,H,Q,L, P, αi, βi, γi in the proof of Theorem 1.3.
(i) The case odd v | e1e2e3abcn. The proof is similar to the proof of Theorem 1.3.
(ii) The case v = 2. As shown in Lemma 3.2, the case (d1, d2, d3) ≡ (−1,−1, 1) mod

4 is impossible.
(ii-a) The case (d1, d2, d3) ≡ (1, 1, 1) mod 4. As shown in Lemma 3.2, if d1 ≡

d2 ≡ 1 mod 8, take P2 = (0, 1/
√
d1, 1/

√
d2, 1/

√
d3) = P2. Then

L1(P2) = β1

√
d2 − γ1

√
d3 = L1(P2),

L2(P2) = β2

√
d3 − γ2

√
d1 = L2(P2),

L3(P2) = β3

√
d1 − γ3

√
d2 = L3(P2).

If d1 ≡ d2 ≡ 5 mod 8, denote by
U =

√
(d3 + 4e2b2n)d1, V =

√
(d3 − 4e1a2n)d2,

U =
√
(d3 + 4e2n)d1, V =

√
(d3 − 4e1n)d2

with U ≡ V ≡ U ≡ V ≡ 1 mod 4. Since U2 ≡ U2 mod 32, we have U ≡
U mod 16. Similarly, V ≡ V mod 16. Take P2 = (2,U/d1,V/d2, 1), then P2 =
(2, U/d1, V/d2, 1) and

L1(P2) ≡ 2e1anα1 + β1V − d3γ1 ≡ L1(P2),

L2(P2) ≡ 2e2bnα2 + d3β2 − γ2U ≡ L2(P2),

L3(P2) ≡ 2e3cnα3 + β3U − γ3V ≡ L3(P2)

modulo 8. If α1 is odd, then exactly one of β1 and γ1 is odd. Thus L1(P2) is odd.
If α1 is even, then both of β1 and γ1 are odd. By choosing a suitable sign of γ1, we
may assume that 2 ‖ (β1 − γ1). Therefore, 2 ‖ L1(P2). Similarly, we may assume
that 2 ‖ L2(P2). Note that β3, γ3 are odd. By choosing a suitable sign of γ3, we
may assume that 2 ‖ L3(P2). Since Li(P2) ≡ Li(P2) mod 8, we have

[Li(P2), d
′
i]2 = [Li(P2), d

′
i]2.

(ii-b) The case d3 ≡ −1 mod 4. As shown in Lemma 3.2,
e1n+ d2 ≡ e2n− d1 ≡ 0 mod 4 and (e1n+ d2)− (e2n− d1) ≡ 0 mod 8.

If e1n + d2 ≡ e2n − d1 ≡ 0 mod 8, take P2 = (1, bu/d1, av/d2, 0) where u2 =
e2nd1, v

2 = −e1nd2. Then P2 = (1, u/d1, v/d2, 0) and
L1(P2) = ae1nα1 + aβ1v = aL1(P2),

L2(P2) = be2nα2 − bγ2u = bL2(P2),

L3(P2) = −aγ3v + bβ3u+ ce3nα3.
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Since
(−γ3v)

2

e1
+

(β3u)

e2
+

(e3nα3)
2

e3
= n(−d2γ

2
3 + d1β

2
3 + e3nα

2
3) = 0,

we have

L3(P2)L3(P2) =
1

2
(a+ b)(a+ c)(b+ c)

(
e3nα3

a+ b
+

β3u

a+ c
− γ3v

b+ c

)2

by Lemma 2.8. Therefore,
[L1(P2), d

′
1]2 = [L1(P2), d

′
1]2 + [a, d′1]2 = [L1(P2), d

′
1]2,

[L2(P2), d
′
2]2 = [L2(P2), d

′
2]2 + [b, d′2]2 = [L2(P2), d

′
2]2,

[L3(P2), d
′
3]2 = [L3(P2), d

′
3]2 + [2(a+ b)(a+ c)(b+ c), d′3]2 = [L3(P2), d

′
3]2

by Lemma 2.7.
If e1n+ d2 ≡ e2n− d1 ≡ 4 mod 8, denote by

U =
√
(4d3b−2 + e2n)d1, V =

√
(4d3a−2 − e1n)d2,

U =
√
(4d3 + e2n)d1, V =

√
(4d3 − e1n)d2

with U ≡ V ≡ U ≡ V ≡ 1 mod 4. Similar to (ii-a), we have U ≡ U,V ≡ V mod 16.
Take P2 = (1, bU/d1, aV/d2, 2), then P2 = (1, U/d1, V/d2, 2) and

L1(P2) ≡ ae1nα1 + aβ1V − 2d3γ1,

L2(P2) ≡ be2nα2 + 2d3β2 − bγ2U,

L3(P2) ≡ −aγ3V + bβ3U + ce3nα3

modulo 16.
If γ1 is odd, then exactly one of α1 and β1 is odd. Thus L1(P2) is odd. If γ1 is

even, then both of α1 and β1 are odd. By choosing a suitable sign of α1, we may
assume that 4 | (α1 + β1). Therefore, 2 ‖ L1(P2). Since L1(P2) ≡ aL1(P2) mod 8,
we have

[L1(P2), d
′
1]2 = [L1(P2), d

′
1]2 + [a, d′1]2 = [L1(P2), d

′
1]2.

Similarly, we may assume that 2 ‖ L2(P2) by choosing a suitable sign of α2. Since
L2(P2) ≡ aL2(P2) mod 8, we have

[L2(P2), d
′
2]2 = [L2(P2), d

′
2]2 + [b, d′2]2 = [L2(P2), d

′
2]2.

Clearly, β3 and γ3 are odd. By choosing a suitable sign of γ3, we may assume
that 2 ‖ L3(P2) and 2 ‖ L3(P2). Since

1

4

(
(−γ3V )2

e1
+

(β3U)2

e2
+

(e3nα3)
2

e3

)
=d3

(
d1β

2
3

e2
+

d2γ
2
3

e1

)
+

1

4
n(e3nα

2
3 + d1β

2
3 − d2γ

2
3)

≡d3(d1e2 + d2e1) ≡ d3
(
(e2n− 4)e2 + (4− e1n)e1

)
≡4d3(−e2 + e1) ≡ 0 mod 8

and 4 | (e1a+ e2b+ e3c), the odd number

L3(P2)

2
· L3(P2)

2
≡1

8
(a+ b)(a+ c)(b+ c)

(
− γ3V

b+ c
+

β3U

c+ a
+

e3nα3

a+ b

)2

mod 8
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is congruent to 1 modulo 4 by Lemmas 2.8 and 2.7. Therefore
[L3(P2), d

′
3]2 = [L3(P2), d

′
3]2.

The rest part is similar to the proof of Theorem 1.3. □

4. The even case

Assume that 2 ‖ e1, 2 ‖ e2, 4 | e3 and E(n) has no rational point of order 4. Write
ei = 2fi. Let n be an odd positive square-free integer. Let Λ = (d1, d2, d3) where
d1, d2, d3 are square-free divisors of 2f1f2f3n.

4.1. Homogeneous spaces. Recall that D
(n)
Λ is defined as

H1 : 2f1nt
2 + d2u

2
2 − d3u

2
3 = 0,

H2 : 2f2nt
2 + d3u

2
3 − d1u

2
1 = 0,

H3 : 2f3nt
2 + d1u

2
1 − d2u

2
2 = 0

and the 2-torsion points of E(n) correspond to
(1, 1, 1), (−2f3n,−f1f3, 2f1n), (−f2f3, 2f3n,−2f2n), (2f2n,−2f1n,−f1f2).

These triples have 2-valuations (0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0) (not correspond-
ingly). Hence any element in the pure 2-Selmer group Sel′2

(
E(n)

)
has a unique

representative Λ = (d1, d2, d3) with odd di | e1e2e3n.

Lemma 4.1. Let Λ = (d1, d2, d3) where d1, d2, d3 are odd. If D
(n)
Λ (Q2) 6= ∅, then

d3 ≡ 1 mod 4.

Proof. Since v2(t) ≥ v2(u3) = v2(u2) by H1 and v2(t) ≥ v2(u1) = v2(u3) by H2, we
may assume that u1, u2, u3 are 2-adic units and t is a 2-adic integer. Then

2f3nt
2 = d2u

2
2 − d1u

2
1 ≡ d2 − d1 mod 8.

This implies that d2 ≡ d1 mod 4 and then d3 ≡ 1 mod 4. □

Lemma 4.2. Let Λ = (d1, d2, d3) where d1, d2, d3 are odd and d3 ≡ 1 mod 4. If
D

(n)
Λ is locally solvable at all places v 6= 2, then D

(n)
Λ is also locally solvable at

v = 2.

Proof. Similar to Lemma 3.2, we have
[2f1nd3, d1]2 = [2f2nd1, d2]2 = [2f3nd2, d3]2 = 0.

If (d1, d2, d3) ≡ (1, 1, 1) mod 4, then d1 ≡ d2 ≡ d3 ≡ 1 mod 8. Take

t = 0, u1 =
√
d3/d1, u2 =

√
d3/d2, u3 = 1.

If (d1, d2, d3) ≡ (−1,−1, 1) mod 4, then 2f1nd3 ≡ d1 + 3 and 2f2nd1 ≡ d2 +
3 mod 8. In other words, 2f1n ≡ d2 +3d3 mod 8 and 2f2n ≡ d3 +3d1 mod 8. Take
t = u3 = 1, then

u2
1 = (d3 + 2f2n)/d1 ≡ 2d2 + 3 ≡ 1 mod 8

and
u2
2 = (d3 − 2f1n)/d2 ≡ −2d1 − 1 ≡ 1 mod 8.

Hence D
(n)
Λ is locally solvable at v = 2. □

The proof of the following lemma is similar to [WZ22, Lemma 3.3].
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Lemma 4.3. Assume that n is coprime with e1e2e3. If q is an odd prime factor of
ei, then D

(n)
Λ (Qq) 6= ∅ if and only if q ∤ di and

•
(

di

q

)
= 1, if q ∤ di+1;

•
(

ei+1ndi

q

)
= 1, if q | di+1, q

2 ∤ ei;

•
(

ei+1n
q

)
=
(

di

q

)
= 1, if q | di+1, q

2 | ei.

Proof. By symmetry, we only need to consider the case i = 1. Assume that
DΛ(Qq) 6= ∅. Since we are dealing with homogeneous spaces, we may assume
that t, u1, u2, u3 are q-adic integers and at least one of them is a q-adic unit. If
q | d1, q | d2, q ∤ d3, then q | u3 by H1 and q | t by H3. Therefore, q | u1 by H2 and
q | u2 by H3, which is impossible. Similarly, the case q | d1, q ∤ d2, q | d3 is also
impossible. Hence q ∤ d1.

If q ∤ d2d3, then
(

d1

q

)
=
(

d2d3

q

)
= 1 by H1. Conversely, if

(
d1

q

)
= 1, then we

take

u2 = d1d3/d2,

u2
1 = d3 − e3nt

2/d1,

u2
3 = d1 + e1nt

2/d3 ≡ d1 mod q,

where t ∈ Zq such that d3−e3nt
2/d1 is a square in Zq. In fact, if e3nd2 is quadratic

residue modulo q, then we may take t =
√

d1d3

e3n
and u1 = 0; if not, then there exists

t ∈ {0, 1, . . . , (q − 1)/2} such that d3 − e3nt
2/d1 mod q is a nonzero square. Hence

DΛ(Qq) is non-empty.
If q | d2, q | d3 and q2 ∤ e1, then

(
e2nd1

q

)
= 1 by H2. Conversely, if

(
e2nd1

q

)
= 1,

then we take

u2
2 = d1d3/d2,

u2
1 = d3 − e3nt

2/d1 ≡ e2nt
2/d1 mod q,

u2
3 = d1 + e1nt

2/d3.

Similar to the previous case, there exists t ∈ Zq such that d1 + e1t
2/d3 is a square

in Zq. Hence DΛ(Qq) is non-empty.
If q | d2, q | d3 and q2 | e1, then

(
d1

q

)
=
(

d2d3

q

)
= 1 by H1 and

(
e2nd1

q

)
= 1 by

H2. Conversely, if
(

e2n
q

)
=
(

d1

q

)
= 1, then

(
−e3nd1

q

)
= 1 and we take

u2
2 = d1d3/d2,

u2
1 = d3 − e3nt

2/d1 ≡ e2nt
2/d1 mod q,

u2
3 = d1 + e1nt

2/d3 ≡ d1 mod q.

Hence DΛ(Qq) is non-empty. □

Let Λ = (d1, d2, d3) ∈ Sel′2
(
E(n)

)
with odd di | e1e2e3n and d3 ≡ 1 mod 4. We

will use the notations x,y, z in (2.3). If e2 > 0 and e3 < 0, or all pi ≡ 1 mod 4,
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write
d1 = px1

1 · · · pxk

k · d̃1,

d2 = py1

1

(
−1

p1

)z1

· · · pyk

k

(
−1

p1

)zk

· d̃2,

d3 = (p∗1)
z1 · · · (p∗k)zk · d̃3

(4.1)

where p∗ =
(

−1
p

)
p. Then d̃1d̃2d̃3 ∈ Q×2.

Theorem 4.4. Let n be an odd positive square-free integer coprime with e1e2e3,
whose prime factors are quadratic residues modulo each odd prime factor of e1e2e3.
Assume that

• both E and E(n) have no rational point of order 4;
• e2 > 0 and e3 < 0, or all pi ≡ 1 mod 4;
•
(

p∗

q

)
= 1 for any odd primes p | n, q | e2e3.

If Sel2(E/Q) ∼= (Z/2Z)2, then the map (d1, d2, d3) 7→
(
x
z

)
induces an isomorphism

Sel′2
(
E(n)

) ∼−→ Ker

(
A+De2 D−e2e3

D−e1e2 AT +De2

)
,

where di | n, d1 > 0, d3 ≡ 1 mod 4.

Proof. Let Λ = (d1, d2, d3) with odd square-free di | e1e2e3n and denote by Λ̃ =

(d̃1, d̃2, d̃3). If all pi ≡ 1 mod 4, then sgn(di) = sgn(d̃i). If e2 > 0, e3 < 0, then
sgn(d1) = sgn(d̃1). Hence D

(n)
Λ (R) 6= ∅ if and only if D(1)

Λ̃
(R) 6= ∅ by Lemma 2.4.

One can show that n, di/d̃i ∈ Q×2
q where q is an odd prime factor of ei by our

assumptions. Therefore, D(n)
Λ (Qq) 6= ∅ if and only if D(1)

Λ̃
(Qq) 6= ∅ by Lemma 4.3.

Hence Λ ∈ Sel2
(
E(n)/Q

)
if and only if Λ̃ ∈ Sel2(E/Q) and D

(n)
Λ is locally solvable

at each p | n by Lemmas 4.1, 4.2 and the fact d3 ≡ d̃3 ≡ 1 mod 4.
If Λ ∈ Sel2

(
E(n)/Q

)
, then Λ̃ ∈ Sel2(E/Q). By our assumptions, Λ̃ = (1, 1, 1).

Therefore, each element in Sel′2
(
E(n)

)
has a unique representative (d1, d2, d3) with

di | n, d1 > 0, d3 ≡ 1 mod 4. Based on this, we can express Sel′2
(
E(n)

)
in terms of

linear algebra by Lemma 2.5 after a translation of languages. One needs the fact
that (

[p∗i ,−n]pj

)
i,j

= AT +D−1. □

If e3 > 0 and e1 < 0, write

d1 = px1
1

(
−1

p1

)z1

· · · pxk

k

(
−1

p1

)zk

· d̃1,

d2 = py1

1 · · · pyk

k · d̃2,

d3 = (p∗1)
z1 · · · (p∗k)zk · d̃3.

Then d̃1d̃2d̃3 ∈ Q×2. Similar to Theorem 4.4, we have:

Theorem 4.5. Let n be an odd positive square-free integer coprime with e1e2e3,
whose prime factors are quadratic residues modulo each odd prime factor of e1e2e3.
Assume that
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• both E and E(n) have no rational point of order 4;
• e3 > 0 and e1 < 0;
•
(

p∗

q

)
= 1 for any odd primes p | n, q | e1e3.

If Sel2(E/Q) ∼= (Z/2Z)2, then the map (d1, d2, d3) 7→
(
y
z

)
induces an isomorphism

Sel′2
(
E(n)

) ∼−→ Ker

(
A+D−e1 D−e1e3

D−e1e2 AT +D−e1

)
,

where di | n, d2 > 0, d3 ≡ 1 mod 4.
4.2. The Cassels pairing. Let (a, b, c) be a primitive triple of odd integers satis-
fying

e1a
2 + e2b

2 + e3c
2 = 0.

Denote by E = Ee1a2,e2b2 and E(n) = Ee1a2n,e2b2n.

Proof of Theorem 1.2. Similar to the proof of Theorem 1.3, both E(n) and E(Q)(n)

have no rational point of order 4. By choosing suitable signs, we may assume that
a ≡ b ≡ c ≡ 1 mod 4.

Assume that e2 > 0 and e3 < 0, or all prime factors of n are congruent to 1
modulo 4. Since the matrix in Theorem 4.4 does not depend on a, b, c, we have a
canonical isomorphism

Sel′2
(
E(n)

) ∼= Sel′2
(
E(n)

)
.

Let Λ = (d1, d2, d3),Λ
′ = (d′1, d

′
2, d

′
3) ∈ Sel′2

(
E(n)

)
with di, d

′
i | n, d1, d′1 > 0, d3 ≡

d′3 ≡ 1 mod 4. If d2 < 0 and d′2 < 0, we replace Λ′ by Λ+Λ′. If d2 > 0 and d′2 < 0,
we switch Λ and Λ′. Since

〈Λ,Λ′〉 = 〈Λ,Λ + Λ′〉 = 〈Λ′,Λ〉,
these operations do not change 〈Λ,Λ′〉. Hence we may assume that d′2 > 0 and
d′3 > 0. When e3 > 0 and e1 < 0, we may assume that d′1 > 0 and d′3 > 0 similarly.

We will denote by D,H,Q,L,P the corresponding symbols for E and D,H,Q,L, P
the corresponding symbols for E in the calculation of Cassels pairing. Recall that
D(n)

Λ is defined as 
H1 : 2f1a

2nt2 + d2u
2
2 − d3u

2
3 = 0,

H2 : 2f2b
2nt2 + d3u

2
3 − d1u

2
1 = 0,

H3 : 2f3c
2nt2 + d1u

2
1 − d2u

2
2 = 0.

Let (αi, βi, γi) be primitive triples of integers satisfying
2f1nα

2
1 + d2β

2
1 − d3γ

2
1 = 0,

2f2nα
2
2 + d3β

2
2 − d1γ

2
2 = 0,

2f3nα
2
3 + d1β

2
3 − d2γ

2
3 = 0.

Choose
Q1 = (α1, aβ1, aγ1) ∈ H1(Q), L1 = 2f1anα1t+ d2β1u2 − d3γ1u3,

Q2 = (α2, bβ2, bγ2) ∈ H2(Q), L2 = 2f2bnα2t+ d3β2u3 − d1γ2u1,

Q3 = (α3, cβ3, cγ3) ∈ H3(Q), L3 = 2f3cnα3t+ d1β3u1 − d2γ3u2.

(i) The case odd v = q | e1e2e3abc. Since
(

p
q

)
= 1 for any prime factor p of n,

d′i > 0 is a square modulo q. Therefore, [Li(Pq), d
′
i]q = 0 = [Li(Pq), d

′
i]q.
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(ii) The case v = p | n. The proof is similar to the proof of Theorem 1.3.
(iii) The case v = 2. Note that d3 ≡ 1 mod 4.
(iii-a) The case (d1, d2, d3) ≡ (1, 1, 1) mod 4. As shown in Lemma 4.2, we have

d1 ≡ d2 ≡ d3 ≡ 1 mod 8, take P2 = (0, 1/
√
d1, 1/

√
d2, 1/

√
d3) = P2. Then

L1(P2) = β1

√
d2 − γ1

√
d3 = L1(P2),

L2(P2) = β2

√
d3 − γ2

√
d1 = L2(P2),

L3(P2) = β3

√
d1 − γ3

√
d2 = L3(P2).

(iii-b) The case (d1, d2, d3) ≡ (−1,−1, 1) mod 4. As shown in Lemma 4.2, we
have (d3 + 2f2b

2n)d1 ≡ (d3 − 2f1a
2n)d2 ≡ 1 mod 8. Denote by

U =
√
(d3 + 2f2b2n)d1, V =

√
(d3 − 2f1a2n)d2,

U =
√
(d3 + 2f2n)d1, V =

√
(d3 − 2f1n)d2

with U ≡ V ≡ U ≡ V ≡ 1 mod 4. Since U2 ≡ U2 mod 16, we have U ≡ U mod 8.
Similarly, V ≡ V mod 8.

Take P2 = (1,U/d1,V/d2, 1), then P2 = (1, U/d1, V/d2, 1). Note that all βi, γi
are odd. By choosing suitable signs of γi, we may assume that 2 ‖ Li(P2). Since

L1(P2) ≡ 2f1anα1 + β1V − d3γ1 ≡ L1(P2),

L2(P2) ≡ 2f2bnα2 + d3β2 − γ2U ≡ L2(P2),

L3(P2) ≡ 2f3cnα3 + β3U − γ3V ≡ L3(P2)

modulo 8, we have
[Li(P2), d

′
i]2 = [Li(P2), d

′
i]2.

The rest part is similar to the proof of Theorem 1.3. □

5. Congruent number elliptic curves

Assume that n = p1 · · · pk ≡ 1 mod 4. Denote by

h2s(n) = dimF2

2s−1Cl
(
Q(

√
−n)

)
2sCl

(
Q(

√
−n)

)
the 2s-rank of the class group of Q(

√
−n). By Gauss genus theory and Rédei’s work

in [R3́4], we can characterize h2(n) and h4(n). See [Wan16, § 3] for more details.

Proposition 5.1. We have h2(n) = k and h4(n) = k − rank(A,D21).

Denote by
E = E1,1 : y2 = x(x− 1)(x+ 1)

the congruent number elliptic curve and E(n) = En,n. Let (a, b, c) be a primitive
triple of positive integers satisfying a2 + b2 = 2c2. Then a, b, c are odd. Denote by
E = Ea2,b2 , E(n) = Ea2n,b2n.

Theorem 5.2 ([WZ22, Theorem 4.4]). Let n ≡ 1 mod 8 be a positive square-free
integer coprime with abc, where each prime factor of n is a quadratic residue modulo
every odd prime factor of abc. Assume that

• p ≡ 1 mod 4 for all primes p | n;
• Sel2(E/Q) ∼= (Z/2Z)2.

Then the following are equivalent:
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(1) rankZ E(n)(Q) = 0 and X
(
E(n)/Q

) ∼= (Z/2Z)2;
(2) h4(n) = 1 and h8(n) ≡ d−1

4 mod 2.
Here d 6= 1, n is a positive factor of n such that (d,−n)v = 1, ∀v, or (2d,−n)v =
1, ∀v.
Proof. Since Sel2(E/Q) ∼= (Z/2Z)2, this result follows from Theorem 1.1 and
[Wan16, Theorem 1.1] directly. □
Theorem 5.3. Let n ≡ 1 mod 8 be a positive square-free integer coprime with abc,
where each prime factor of n is a quadratic residue modulo every prime factor of
abc. Assume that

• either n or a or b has no prime factor ≡ 3 mod 4;
• p ≡ ±1 mod 8 for all primes p | n;
• Sel2

(
E(2)/Q

) ∼= (Z/2Z)2.
Then the following are equivalent:

(1) rankZ E(2n)(Q) = 0 and X
(
E(2n)/Q

)
[2∞] ∼= (Z/2Z)2;

(2) h4(n) = 1 and d ≡ 9 mod 16.
Here, d is the unique divisor of n such that d 6= 1, d ≡ 1 mod 4 and (d, n)v = 1, ∀v.
Proof. For any prime q | c, we have a2 ≡ −b2 mod q. Therefore q ≡ 1 mod 4 and(

p∗

q

)
=
(

p
q

)
= 1. If n or b has no prime factor ≡ 3 mod 4, then

(
p∗

q

)
=
(

p
q

)
= 1

for all primes p | n, q | b. We apply Theorem 4.4 to (e1, e2, e3) = (2a2, 2b2,−4c2),

the map (d1, d2, d3) 7→
(
x
z

)
induces an isomorphism

Sel′2
(
E(n)

) ∼−→ KerM where M =

(
A+D2 D2

D−1 AT +D2

)
=

(
A

D−1 AT

)
and di | n, d1 > 0, d3 ≡ 1 mod 4.

One can show that

KerM ⊇
{(

0
d

)
,

(
1

d+ 1

)
: d ∈ KerAT

}
.

Since A1 = 0, we have rankAT = rankA ≤ k − 1 and then KerM has at least
four vectors. Hence

dimF2
Sel′2

(
E(n)

)
= 2 ⇐⇒ rankA = k − 1 ⇐⇒ h4(n) = 1

by Proposition 5.1.
Assume that h4(n) = 1. Note that (pj ,−n)pi

= (p∗i , n)pj
. Therefore, ATd = 0

if and only if (d, n)p = 1 for all p | n, where d = (p∗1)
s1 · · · (p∗k)sk , d = (s1, . . . , sk)

T.
Hence Sel′2

(
E(n)

)
is generated by Λ = (n, 1, n) and Λ′ = (1, d, d).

By Theorem 1.2, we may assume that a = b = c = 1. Recall that D(n)
Λ is defined

as 
H1 : 2nt2 + u2

2 − nu2
3 = 0,

H2 : 2t2 + u2
3 − u2

1 = 0,

H3 : −4nt2 + nu2
1 − u2

2 = 0.

Choose
Q2 = (0, 1, 1) ∈ H2(Q), L2 = u1 − u3,

Q3 = (1, 0,−2) ∈ H3(Q), L3 = 2t+ u1.
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By Lemma 2.2, we have

〈Λ,Λ′〉E(n) =
∑

v|2n∞

[
L2L3(Pv), d

]
v

for any Pv ∈ D
(n)
Λ (Qv).

For v | n∞, take Pv = (1, 2, 0,−
√
2), then L2L3(Pv) = 4(2+

√
2) and 〈Λ,Λ′〉v =

[2+
√
2, d]v. For v = 2, take P2 = (0, 1,

√
n,−1). Then L2L3(P2) = 2 and 〈Λ,Λ′〉2 =

[2, d]2 = 0. Hence 〈Λ,Λ′〉E(n) =
[
2+

√
2

|d|

]
≡ d−1

8 mod 2 by Lemma 5.4. Conclude the
results by Lemma 2.3.

If a has no prime factor ≡ 3 mod 4, then
(

p∗

q

)
=
(

p
q

)
= 1 for all primes

p | n, q | a. We apply Theorem 4.5 to (e1, e2, e3) = (−2b2,−2a2, 4c2). Then we can
prove the result similarly. □

Lemma 5.4. Let m ≡ 1 mod 8 be a square-free integer with prime factors congruent
to ±1 modulo 8. Then m ≡ 1 mod 16 if and only if

(
2+

√
2

|m|

)
= 1.

Proof. Write m = u2 − 2w2 ≡ 1 mod 8. Denote by µ = u + w and λ = u + 2w.
Then m = 2µ2−λ2 and u, µ, λ are odd. Let w′ be the positive odd part of w. Then(

w

|m|

)
=

(
m

w′

)
=

(
u2 − 2w2

w′

)
= 1,(

λ

|m|

)
=

(
m

|λ|

)
=

(
2µ2 − λ2

λ

)
=

(
2

|λ|

)
and λ = u+ 2w ≡ (2±

√
2)w mod m. Hence(

2 +
√
2

|m|

)
=

(
2

|λ|

)
.

Since m+ λ2 = 2µ2 ≡ 2 mod 16, we have

m ≡ 1 mod 16 ⇐⇒ λ ≡ ±1 mod 8 ⇐⇒
(

2

|λ|

)
= 1 ⇐⇒

(
2 +

√
2

|m|

)
= 1. □
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